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Abstract

Security of cyber networks is crucial; recent severe cyber-attacks have had a devastating

e�ect on many large organizations. The attack graph, which maps the potential attack

paths of a cyber network, is a popular tool for analyzing cyber system vulnerability. In

this study, we propose a bi-level stochastic network interdiction model on an attack graph

to enable a risk-averse, resource constrained cyber network defender to optimally deploy

security countermeasures that protect against attackers with an uncertain budget. This risk-

averse conditional-value-at-risk (CVaR) model minimizes a weighted sum of the expected

maximum loss over all scenarios and the expected maximum loss from the most damaging

attack scenarios. We develop a customized constraint and column generation algorithm to

solve our model as well as several acceleration techniques to improve the computational

e�ciency. Numerical experiments demonstrate that the acceleration techniques enable the

solution of relatively large problems within a reasonable amount of time: applying all the

acceleration techniques also reduces the average computation time of the basic algorithm by

71% for 100-node graphs. Using metrics called mean-risk value of stochastic solution and

value of risk-aversion, computational results suggest that our stochastic risk-averse model

signi�cantly outperforms deterministic and risk-neutral models when 1) the distribution of

attacker budget is heavy-right-tailed and 2) the defender is highly risk-averse.

Keywords: Attack graph, Stackelberg game, mixed-integer programming, conditional-value-

at-risk, cyber-security

1 Introduction

Cyber network security has become a crucial issue for many organizations. In recent history,

major cyber-attacks resulted in catastrophic business losses for many large-scale organizations.

For example the 2017 Equifax data breach compromised the social security numbers and driver's

license numbers of 143 million consumers (Bernard et al., 2017), the 2016 Uber data breach dis-

closed personal information of 20 million Uber users (Shields and Newcomer, 2018), and the

WannaCry cyber-attack in 2017 infected more than 200,000 computers in nearly 150 countries

causing an estimated loss of 4 billion U.S. dollars (Berr, 2017). The severity of these cyber-

attacks suggests that protection of cyber networks is crucial for organizations to minimize loss

of data due to security breaches while still taking advantage of the bene�t of increased connec-

tivity of internet networks. Therefore, research studies aim to develop methodologies to provide

decision support to the organizations in mitigating the risks of cyber-attacks.
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Vulnerability assessment of the cyber networks is a key input in developing robust cyber-

security strategies to deploy security countermeasures (e.g., �rewalls, intrusion detection/prevention

systems) to cyber-attacks. Attack graph is one of the tools to analyze the vulnerability of cyber

networks and develop strategies to deploy security countermeasures (Nandi et al., 2016). Attack

graphs can be used to map an organization's network topology to potential attack paths.

Research studies have used attack graphs to analyze vulnerability of cyber systems; however,

most of these have employed logic-based models that are ad-hoc in nature (Dewri et al., 2007).

Unlike logic-based models, a rigorous mathematical model that captures the interaction between

a defender and an attacker can provide more robust network interdiction (network hardening by

placing security countermeasures on potential attack paths) decisions. However, very few stud-

ies have proposed rigorous mathematical models to provide decision support for cyber network

interdiction. Moreover, in reality, systems are vulnerable to multiple attackers, each with dif-

ferent skills, resources, etc. A network interdiction decision derived by considering uncertainty

in attacker capabilities is more likely to be robust compared to an interdiction decision that

results from modeling a single attacker with a known capability. Furthermore, in cyber-security,

it is crucial to account for minimization of the risk of most damaging attacks, since, a sudden

severe attack can drive an organization out of business. Risk-neutral models may perform well

for problems dealing with repetitive decision making subject to similar conditions, but perform

poorly in the presence of high variability and non-repetitive decision making under uncertainty

(Noyan, 2012). Since cyber-attacker capabilities vary widely, and since large cyber-attacks can

render severe consequences to an organization, a risk-averse network interdiction decision would

be more robust than a risk-neutral one. Therefore, a new interdiction model is needed that

models a risk-averse cyber network defender under uncertainty in attacker capabilities.

In this regard, we model a risk-averse defender-attacker stochastic Stackelberg game based on

an attack graph. A stochastic network interdiction model with an uncertain attacker budget can

to some extent capture multiple attackers with di�erent capabilities, thus better representing

the real-life scenario than the deterministic models considering a single attacker with a �xed

budget. However, traditional risk-neutral stochastic programming typically seeking to minimize

expected loss does not consider the most damaging attack (loss) scenarios. In contrast, a risk-

averse stochastic programming model seeks to minimize expected loss as well as the risk of

most damaging cyber-attacks under uncertain attacker budget. The goal of this research is

to (1) model a risk-averse cyber network defender seeking to minimize the mean-risk expected

maximum loss from cyber-attacks, (2) measure the robustness of the optimal interdiction policy

resulting from a risk-averse model as opposed to the optimal interdiction policy from a risk-

neutral one, (3) investigate the bene�ts of modeling multiple attackers when computing the

optimal interdiction policy, and (4) provide experimental results and managerial insights to

help network owners in optimally deploying security countermeasures to minimize the risk of

cyber-attacks.

1.1 Related Literature

Research studies have widely used di�erent variations of attack graphs as network analysis tools

(Phillips and Swiler, 1998; Bistarelli et al., 2006; Roy et al., 2010; Serra et al., 2015). Network
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interdiction based on attack graphs involves the removal (interdiction) of a set of arcs or nodes

from the attack graph, known as cut-sets, to isolate a set of goal nodes (critical assets) and

thereby protect them from potential attacks. Research studies enhanced network security by

generating cut-sets (Dewri et al., 2007; Noel and Jajodia, 2008; Alhomidi and Reed, 2013) in

the attack graph network interdiction literature.

Past research has also modeled the interaction between an attacker and a defender as a

two player Stackelberg game. Dewri et al. (2012) modeled the interaction between a network

defender and an attacker by a multi-objective optimization model. Their model provides an

optimal plan for placing security countermeasures on a network to maximize the return on

investment for the network defender. Several uncertainties exist in these attack-graph-based

network hardening problems, such as the defender's imperfect information about the attacker's

exploits and the attacker's imperfect information about network topology etc. Some studies

considered these uncertainties in network interdiction models based on attack graphs. Zonouz

et al. (2014) proposed a response and recovery engine (RRE) to model the attacker-defender

interaction as a two-player stochastic Stackelberg game. The RRE utilized attack response

trees (ARTs) to analyze undesired system-level security events and to consider the uncertainties

in intrusion detection alert noti�cations. Durkota et al. (2015b) introduced a game theoretic

model to capture the interaction between defender and attacker over a dependency attack graph:

the network defender attempts to reduce the risk of attacks by optimally placing �honeypots�

(fake hosts) with a limited budget. Their research was further extended by Durkota et al.

(2015a): the authors assumed that the attacker has incomplete information about the location

of the defender-installed honeypots. Nguyen et al. (2018) proposed another game-theoretic

model based on a Bayesian attack graph that models multistage interaction between a network

defender and an attacker. The authors proposed heuristic strategies to solve both attacker's

and defender's problems, and employed a simulation approach to analyze game models over

heuristic strategies. Zhang et al. (2018) presented a Monte Carlo graph search algorithm that

can capture the interaction between cyber network defender and attackers over a wide range of

graph structures.

In summary, there is a lack of rigorous mathematical models on cyber network hardening

using attack graphs because most of the models are logic-based and ad-hoc models. Also,

according to Nandi et al. (2016), the existing algorithms to solve the two-player games over attack

graphs are mostly based on either simulation or heuristics. A bi-level network interdiction model

over an attack graph was proposed by Nandi et al. (2016), where the outer level represents the

defender's objective of minimizing the maximum loss from attacks and the inner level models

the attacker's objective of maximizing the breach loss to the network defender. The authors

formulated the model as a mixed-integer programming problem and solve the resulting model

by developing a constraint and column generation algorithm. Although Nandi et al. (2016)

provided the most rigorous mathematical models and algorithms on network security over an

attack graph to date, the authors assumed that an attacker can breach a goal node through an

arc with certainty if no countermeasure is deployed on that particular arc. However, in reality,

the success of an attack through an arc is uncertain even if no countermeasure is deployed on

that arc. Poolsappasit et al. (2012) considered probability of success of attack through arcs.
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However, the probabilities are exogenous to the model and are pre-calculated. Addressing the

need for a stochastic model, a two-stage stochastic programming model based on attack graphs

was formulated by Bhuiyan et al. (2016), where the authors assumed the probability of success

of attack through an arc is uncertain. The results presented in Bhuiyan et al. (2016) showed

that the mean value problem performed well when the mean probabilities of success of attacks

through arcs are signi�cantly di�erent. Also, Bhuiyan et al. (2016) considered a single attacker

in computing the optimal interdiction policy, which may not be robust against di�erent attackers

having di�erent capabilities to attack.

Besides mathematical modeling based on attack graphs, some studies proposed generic math-

ematical models to mitigate the risk of cyber-attacks, such as allocating limited mitigation re-

sources to reduce the vulnerability of information technology supply chain infrastructure from

cyber-attacks (Zheng et al., 2019; Zheng and Albert, 2019), incentivizing the implementation of

countermeasures to mitigate the risk of cyber-attacks (Zhang et al., 2017), and disconnecting

the phasor measurement units from the resulting network to mitigate the risk of cyber-attack

propagation in a power grid network (Mousavian et al., 2015).

Our work contributes to the general network interdiction literature as well. In this litera-

ture, research studies modeled two-player Stackelberg game in several application areas, such as

interdicting a terrorist's nuclear weapons project where the interdictor's goal is to maximize the

minimum completion time of the project (Brown et al., 2009; Reed, 1994), allocating security

resources to maximize the resilience of a water distribution network against terrorist attacks

(Qiao et al., 2007; Jiang and Liu, 2018), interdicting or mitigating the disruptions to large-scale

electrical power grids that can be caused by a terrorist's attack (Salmeron et al., 2004, 2009),

and hedging against worst-case facility losses to maximize coverage (O� Hanley and Church,

2011).

Some studies also incorporated uncertainties into their bi-level network interdiction models

including protection of facilities against uncertain attacks to minimize the worst-case damage

(Liberatore et al., 2011), interdiction of arcs in a network to maximize the length of the shortest

path (Israeli and Wood, 2002) and penetration time (Xiao et al., 2018) of the attacker in the

network, and interdiction of nuclear smuggling networks (Allain, 2016; Morton et al., 2007;

Nehme, 2009; Pan and Morton, 2008; Sullivan et al., 2014). There is some similarity in the

modeling perspective between our work and the studies on interdiction of nuclear smuggling

networks, especially with Pan and Morton (2008). Similar to our work, the nuclear smuggling

interdiction models seek to install sensors on the arcs of a network to minimize the maximum

probability of an evader to traverse undetected. However, the above mentioned nuclear smuggling

interdiction models assumed that in a speci�c realization the attacker can select only a single

origin-destination path. Also, those models are risk-neutral.

Few research studies on bi-level stochastic network interdiction literature considered a risk-

averse objective. Song and Shen (2016) developed a risk-averse chance constrained model for

a stochastic shortest path interdiction problem. The goal of the risk-averse interdictor (leader)

is to maintain a high probability that the follower has to travel a longer distance than a given

threshold. The authors sought to optimize Value-at-Risk (VaR) and proposed a branch-and-cut

algorithm to solve the risk-averse chance constrained model. The authors reformulated their
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bi-level model into a single-level model using duality. Collado et al. (2017) proposed a risk-

averse solution approach to a stochastic path detection problem, where the protector allocates

security resources on a network to detect an invader's path with high probability. The authors

employed a mean-upper semideviation risk measure for the risk-aversion approach. The risk-

averse problem was reformulated to a single-level linear mean-semideviation model. Lei et al.

(2018) modeled a maximum �ow interdiction problem as a stochastic bi-level and tri-level model

for di�erent risk preference combinations of a leader and a follower. Due to the continuous

nature of the follower's problem (inner level), the original bi-/tri-level models were reformulated

into a single-level mixed-integer linear program using duality of the inner level model. Pay et al.

(2019) developed a stochastic shortest path network interdiction model where the defender

(leader) seeks to maximize travel cost of the attackers' (follower) shortest path. Unlike Song

and Shen (2016), the authors assumed that the risk-preference is ambiguous to the defender and

is modeled using an utility function, where the defender has incomplete information about the

utility function. The authors reformulated the bi-level model into a single-level and implemented

a branch-and-cut algorithm to solve it.

1.2 Research Gap

We see from the literature review on network interdiction over an attack graph that there is

a scarcity of rigorous mathematical analysis on attack graph network interdiction. Moreover,

most of the studies in the existing literature modeled the defender-attacker interaction using one

defender and one attacker on an attack graph (e.g., Nandi et al., 2016; Bhuiyan et al., 2016).

However, a network is usually attacked by many attackers having di�erent capabilities and

resources. Therefore, to have a robust interdiction decision, the network defense model should

consider multiple attackers with varying capabilities and resources, which can be modeled by

considering attackers with di�erent budgets.

None of the existing research considered risk-aversion in attack-graph-based network inter-

diction models. That said, a risk-neutral optimal solution may not be robust in a non-repetitive

decision making that occurs in cyber-security, in which large attacks can cripple an organiza-

tion, as cyber-attacks cause not only a �nancial loss, but a loss of reputation. It is impossible

to recover from such consequences in a short time; if recovery is possible at all. Therefore, risk

minimization for the most damaging attacks is crucial in addition to minimizing the expected

loss. In this case, an interdiction policy from a risk-averse approach that considers the vari-

ability of the random parameters is more robust than the interdiction policy resulting from a

risk-neutral approach.

Furthermore, we see from the generic network interdiction literature that few studies modeled

a risk-averse network defender in a bi-level stochastic network interdiction problem. Though

few studies dealt with the risk-averse bi-level problems, the continuous nature of the inner level

problem allows the conversion into a single-level using duality. However, the presence of a

discrete inner level problem makes resolving the problem computationally more di�cult. This

requires dealing with additional computational challenges to solve a risk-averse bi-level stochastic

network interdiction problem.

The research gap discussed above suggests further research on network interdiction over
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attack graphs to answer the following research questions: (1) how much is the bene�t of modeling

multiple attackers with di�erent budget, (2) how much more robust is the optimal interdiction

policy of a risk-averse network defender when compared to a risk-neutral one, and (3) how

sensitive is the optimal interdiction policy to changes in the risk preferences of the cyber network

defender. There is also a need for further research on the general risk-averse stochastic network

interdiction problem to develop new models and solution approaches.

1.3 Contributions

To address the aforementioned research gaps, this paper presents a modeling framework for

attack graph interdiction under uncertainty. Our model allows for multiple attackers and models

risk-aversion in the defender's objective. This research is also the �rst to model a risk-averse

cyber network defender on network hardening over an attack graph. This research extends the

general stochastic network interdiction literature by introducing a new mathematical model and

algorithm.

Speci�cally, our research makes the following contributions in this paper: (1) formulates a

new bi-level risk-averse mixed-integer stochastic programming model over an attack graph incor-

porating the conditional-value-at-risk measure; (2) propose a customized constraint and column

generation algorithm to solve the risk-averse stochastic programming model; (3) presents a novel

acceleration technique that speeds up the basic algorithm signi�cantly to solve relatively large-

sized problems; and (4) provides experimental results to demonstrate the bene�t of modeling

multiple attackers and, yields insights into the e�ect of risk-aversion on the optimal interdic-

tion policy, and the signi�cance of solving a risk-averse stochastic network interdiction problem

rather than a risk-neutral and a deterministic one.

2 Problem Description

This paper studies the interaction of a risk-averse cyber network defender with attackers in a

stochastic Stackelberg game over an attack graph. In this game, the defender acts �rst and places

security countermeasures on potential attack paths through which the attackers can breach

the critical assets of the organization. The defender pays a security cost to place a security

countermeasure on an arc, and the total cost of countermeasure deployment cannot exceed the

budget of the defender. Realizing the defender's action, each attacker generates an attack plan

to maximize the loss to the defender. The attacker must also incur an attack cost for using an

arc, and the total attack cost should be within the individual attacker's budget. The budgets

of the attackers are known to the defender only in distribution. The defender's objective is to

minimize the expected maximum loss from all the attackers as well as the expected maximum

loss from the most damaging attacks.

2.1 Attack Graphs

Attack graphs represent the potential attack paths in a network. In an attack graph, a node

can represent a security condition, the state of an attack, or a vulnerability. An arc (edge)

between nodes stands for an attacker's action or exploit. The tail node and the head node

6



Figure 1: A simple network (adopted from Noel and Jajodia (2008))

of an arc are the pre-condition and the post-condition, respectively. To see how a network

can be represented by an attack graph, consider a simple example (shown in Figure 1) �rst

described in Noel and Jajodia (2008) in which a �rewall is installed to block outside attack.

However, there could be multiple paths that enable outside attackers to compromise the mail

server. These potential attack paths are demonstrated in the attack graph of this network in

Figure 2. The red ovals and the green rectangles represent the initial network conditions and

attacker exploits, respectively. For example, the Nessus vulnerability 10671 of the web server is

represented by the initial condition nessus.10671. The iis_decode_bug(attack, web) is an

attacker exploit that requires two preconditions, nessus.10671 and execute (attack), to be

satis�ed. Completion of this exploit results in the post-condition execute (web). The attacker

can continue to make other exploits successful by satisfying the conditions and eventually meeting

the overall attack goals, which are shown as blue hexagons.

2.2 Optimization Problem

The defender-attacker stochastic Stackelberg game over an attack graph can be formulated as

a risk-averse bi-level stochastic optimization problem. The outer level represents the defender's

problem, and the inner level is the attackers' problem. Both defender and attackers have limited

budgets. We model multiple attackers by considering a single attacker with an uncertain budget.

The defender of the network estimates the budget of the attackers from a probability distribution

with known parameter values. In this stochastic optimization problem, we consider a �nite

number of scenarios, each representing a particular attacker. With a limited budget, the defender

interdicts the best subset of arcs to minimize the expected maximum loss over all scenarios and

to minimize the expected maximum loss from the most damaging attack scenarios. The expected

maximum loss is the probability-weighted maximum losses from all the attack scenarios. The

decision of interdicting a set of arcs is referred to as an interdiction plan. We refer to the

summation of the expected maximum loss over all scenarios and the expected maximum loss

from the most damaging attack scenarios as the mean-risk expected maximum loss. It is assumed

that if an arc is interdicted, no attack is possible through that arc. Given a set of interdicted

arcs, an attacker chooses an optimal attack plan within the limited budget to maximize the loss

to the defender. An attacker starts the attack from an initially vulnerable node (initial security

condition) and continues penetrating the network through the transition nodes until breaching
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Figure 2: Attack graph of the small network (adopted from Noel and Jajodia (2008))

Figure 3: Attack graph example of level = 3
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a goal node (critical asset). An attack path consists of the arcs from an initially vulnerable node

to a goal node. A set of one or more attack paths constitutes an attack plan. It is assumed

that an attacker has to incur attack cost for an arc only once even if the arc is used to breach

multiple goal nodes in an attack plan, making the attacker's problem a discrete optimization

problem. Also, we assume that a goal node is damaged completely if it is breached once.

2.3 Example

Figure 3 shows an example of the attack graphs used in this research. Each node is labeled as

�l-b�, where �l� is the node index and �b� is the loss incurred if that node is breached. The green

nodes are the initially vulnerable nodes (initial security condition), the purple nodes are the

transition nodes, and the grey nodes are the goal nodes (critical assets). The network defender

incurs a loss if an attacker can breach one of the goal nodes. The arc weights represent the

probability of success of an attack through that arc.

To understand the interaction between the defender and the attacker on the stochastic pro-

gramming framework, consider a small example optimization problem. We assume two attackers

with attack budgets of 2 and 3 units, respectively; using an arc at least once costs an attacker

1.0 units. We consider the two attack scenarios to occur with equal probability.

If we assume the defender has a budget of 0 units, no interdiction is possible. Now, with no

interdiction, the optimal attack plan of attacker 1 is to breach goal node 4 through the attack

path 0-2-4, which results in a maximum loss of 3.86 (=0.52×0.742×10) to the defender at a cost
of 2.0 to the attacker. The optimal attack plan of attacker 2 is to use the attack paths 0-2-3

and 0-2-4 that result in a maximum loss of 5.496 (=0.52×0.742×10 + 0.52×0.63×5) at a cost

of 3.0 to the attacker. Thus, the expected maximum loss to the defender is 4.68 (=0.50×3.86 +
0.50×5.496).

Now, if we assume that the defender has a budget of 1 unit, and the defender interdicts arc

(0, 2), the optimal attack plan of attacker 1 is to use path 0-1-3 resulting in a maximum loss

of 0.16. Attacker 2 chooses the attack path 0-1-2-4 that leads to a maximum loss of 4.92. The

resulting expected maximum loss from the two scenarios becomes 2.54.

This example optimization problem, which seeks to minimize the expected maximum loss,

raises an important question: if the defender was also concerned with minimizing the risk of

the most damaging scenarios, would the defender's solution change? To address this question,

we incorporate CVaR into our stochastic programming framework. This risk-averse approach is

described in detail in the next section.

3 Mathematical Formulation

In this section, we formulate the risk-averse bi-level problem as a two-stage stochastic mixed-

integer programming model. The �rst-stage model represents the outer level, which is referred

as MinMaxExpLoss. The second-stage model stands for the inner level and is referred as

MaxLoss. The parameters and variables for the mathematical formulation are listed in Table

1.
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Table 1: Notation.

(a) Sets

Sets Description

N Set of nodes
NI Set of initially vulnerable nodes
NT Set of goal nodes
A Set of arcs
Al(i) Set of arcs leaving node i
Ae(i) Set of arcs entering node i
S Set of scenarios
Psk Set of paths in attack scenario s at iteration k
Ap Set of arcs in path p

(b) Parameters

Parameters Description

lt Loss resulting from breaching a goal node t ∈ NT
pij Probability of success of attack through arc (i, j)
ps Probability of scenario s
cdij Cost of deploying countermeasures on arc (i, j)

caij Cost of attack through arc (i, j)

λ Risk coe�cient
α Level of con�dence
bd Defender's budget
ba Attacker's budget
lbp Loss resulting from breaching a goal node through path p

P sp Probability of path p in scenario s

(c) Variables

Variables Description

xij 1 if countermeasures are deployed on arc (i, j), 0 otherwise
fij 1 if arc (i, j) is used for one or more attacks, 0 otherwise
zi Probability of node i being breached
yij Product of zi and fij
η 1st stage variable (represents the value-at-risk, VaR)
vs Excess loss variable for scenario s ∈ S
rp 1 if path p is interdicted, 0 otherwise

As we consider risk-aversion in the two-stage stochastic programming model, the risk-averse

framework is described in the following sub-section.

3.1 CVaR Measure in Stochastic Programming

In this paper, the attacker budget is a random parameter which is estimated by the defender

from a probability distribution. Therefore, the maximum loss to the defender in di�erent sce-

narios is also a random variable, which in turn makes the expected maximum loss a random

variable as well. In a risk-neutral approach, we would compare only the expected values in

deciding the optimal solution to the stochastic programming problems. However, it is crucial to
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consider the e�ect of variability and take risk measures as preference criteria in comparison of the

random variables (Noyan, 2012). Mean-risk models are developed in stochastic programming to

incorporate the risk measures that provides a robust solution in the presence of variability. The

mean-risk function of a stochastic programming problem involves a risk-measure component in

addition to the traditional expected value component:

min E(g(x, ξ)) + λφ (g(x, ξ)) (1)

where g(x, ξ) is the second-stage problem for a particular realization of the random parame-

ter ξ, x is the �rst-stage decision vector, φ is a speci�c risk measure, and λ is the risk coe�cient.

The value of the risk coe�cient depends on the degree of risk preference of the decision maker.

The risk coe�cient represents the exchange rate of mean cost for risk. In the existing litera-

ture, several di�erent risk measures are presented, for example, Ahmed (2006) presented several

computationally tractable mean-risk models. In our risk-averse approach, we incorporate a

conditional-value-at-risk measure, which is a well known downside risk measure. Artzner et al.

(1999) presented some axiomatic properties required for risk measures to be coherent, and the

authors showed that the CVaR is a coherent risk measure.

In this paper, we incorporate the CVaR approach similar to Noyan (2012) and Schultz and

Tiedemann (2006). Both in our paper and in Schultz and Tiedemann (2006), the recourse func-

tion contains integer variables. Due to the mixed-integer recourse, convexity of the objective

function in a mean-risk model does not hold. The risk measures should have some properties

that make the corresponding mean-risk mixed-integer stochastic programs structurally sound

and computationally tractable to make them applicable to real-life problems (Schultz and Tiede-

mann, 2006). Schultz and Tiedemann (2006) demonstrated that the CVaR measure possesses

these requirements.

The conditional-value-at-risk quanti�es the expected value of the α−tail distribution of

g(x, ξ). Now, the mean-risk function (1) is as follows:

min E(g(x, ξ) + λCV aRα (g(x, ξ)) (2)

where CV aRα stands for the conditional-value-at-risk at the level of con�dence α. In the

context of our work, the CV aRα computes the expected value of the excess losses that exceeds

the value-at-risk at con�dence level α. Value-at-risk (V aRα) is also a risk measure that provides

an upper bound on the loss that is exceeded only with a probability of 1− α. The value-at-risk
can be mathematically expressed as:

V aRα(g) = inf{η : ϕ(x, η) ≥ α} (3)

where ϕ(x, η) is the distribution function of g(x, ξ), and level of con�dence α ∈ (0, 1)

The relation between the CV aRα and V aRα corresponding to the random variable g can be

expressed as:
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CV aRα(g) = E(g | g ≥ V aRα(g)) (4)

The CV aRα is also referred to as tail V aR at con�dence level α. We can compute the

conditional-value-at-risk at con�dence level α from the following expression:

CV aRα(g) = infη∈R{η +
1

1− α
E(max(g − η), 0} (5)

According to Schultz and Tiedemann (2006), for a �nite number of scenarios ξ1, ξ2, ....., ξ|S|

and the corresponding probabilities p1, p2, ....., p|S|, minimization of the conditional-value-at-risk

min CV aRα g(x, ξ) (6)

can be reformulated as

min {η +
1

1− α
∑
s∈S

psvs : Wys = hs − T sx} (7)

where, vs ≥ (qs)Tys − η, ∀s ∈ S

ys ≥ 0, ∀s ∈ S

x ∈ X

η ∈ R

vs ≥ 0, ∀s ∈ S

where vs represents the excess loss in scenario s ∈ S and is considered an additional second-

stage variable. The variable η acts as an additional �rst-stage variable. The CVaR measure is

incorporated to the bi-level two-stage stochastic programming model and the resulting mean-risk

model is presented in the following subsection.

3.2 Mean-Risk Two-Stage Stochastic Programming Model

The �rst-stage model represents the defender's objective, which is to minimize the expected max-

imum loss from all the scenarios as well as to minimize the expected maximum loss from the most

damaging attack scenarios. The �rst-stage problem is formulated as follows (MinMaxExpLoss) :

min
∑
s∈S

psQs ˆ(x) + λ

(
η +

1

1− α
∑
s∈S

psvs

)
(8a)

s.t. cdijxij ≤ bd (8b)

vs ≥ Qs(x̂)− η ∀s ∈ S (8c)

xij ∈ {0, 1} ∀(i, j) ∈ A (8d)

η ∈ R (8e)

vs ≥ 0 ∀s ∈ S (8f)
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The objective function (8a) has two components, where the �rst component computes the

expected maximum loss over all the scenarios and the second component models the CVaR

measure. Constraint (8b) ensures that the total cost of deploying countermeasures on a subset

of arcs should be within the defender's budget. Constraints (8c) compute the excess loss for all

the attack scenarios.

The second-stage model (sub-problem) stands for a particular realization of the random

attacker budget. The sub-problem from each scenario represents an individual attacker (inner

level) whose objective is to maximize the total loss to the defender for a given interdiction plan

of the defender x̂ determined by the �rst-stage (outer level) model. We refer to the following

formulation of the inner problem as MaxLossNLP.

Qs(x̂) = max
∑
t∈NT

ltzt (9a)

s.t.
∑

(i,j)∈A

caijfij ≤ ba (9b)

fij ≤ 1− x̂ij ∀(i, j) ∈ A (9c)

zj ≤
∑

(i,j)∈Ae(j)

pijzifij ∀j ∈ N�NI (9d)

∑
(i,j)∈Ae(j)

fij ≤ 1 ∀j ∈ N�NI (9e)

fij ∈ {0, 1} ∀(i, j) ∈ A (9f)

0 ≤ zj ≤ 1 ∀j ∈ N (9g)

The objective function (9a) calculates the maximum total loss to the defender or the maxi-

mum total reward acquired by the attacker given an interdiction plan of the defender. Constraint

(9b) enforces that the total attack cost cannot exceed the attacker's budget. Each of the con-

straints (9c) ensures that no attack is possible through an arc if that arc is already interdicted

by the defender in the �rst-stage model. Our model ensures that the attacker chooses an arc

with maximum attack success probability to breach a node, which is enforced by constraints

(9d). Constraints (9e) ensure our assumption that the attack cost is incurred once for an arc

even if the arc is used in multiple attack paths.

In the MaxLossNLP(9) formulation, the constraint (9d) contains product of the two vari-

ables fij and zi that makes MaxLossNLP a nonlinear formulation. However, this type of

non-linearity can be linearized by employing standard procedures. The linearization technique

introduces an additional continuous variable yij , which replaces the product term zifij . The

linearization also introduces some additional linearization constraints. We refer to the linearized

second-stage model as MaxLossMIP, which is presented as follows:
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Qs(x̂) = max
∑
t∈NT

ltzt (10a)

s.t
∑

(i,j)∈A

caijfij ≤ ba (10b)

fij ≤ 1− x̂ij ∀(i, j) ∈ A (10c)

zj ≤
∑

(i,j)∈Ae(j)

pijyij ∀j ∈ N�NI (10d)

yij ≥ zi − (1− fij) ∀(i, j) ∈ A (10e)

yij ≤ fij ∀(i, j) ∈ A (10f)

yij ≤ zi ∀(i, j) ∈ A (10g)∑
(i,j)∈Ae(j)

fij ≤ 1 ∀j ∈ N�NI (10h)

fij ∈ {0, 1} ∀(i, j) ∈ A (10i)

0 ≤ zj ≤ 1 ∀j ∈ N (10j)

0 ≤ yij ≤ 1 ∀(i, j) ∈ A (10k)

The MaxLossMIP is a mixed-integer linear programming formulation of the second-stage

problem. Constraints (10d)-(10g) are introduced to the model due to the linearization of the

nonlinear constraint (9d) of MaxLossNLP (9). The objective function and the other constraints

of MaxLossMIP are the same as those of MaxLossNLP.

4 Solution Approach

This section details the solution methodology for solving our risk-averse bi-level stochastic pro-

gramming model. Most of the research in the existing literature contains binary variables only

in the outer level, a situation that is computationally advantageous because a bi-level model

can be reformulated as a single-level model by taking the dual of the inner level model (Wood,

1993; Israeli and Wood, 2002). However, some studies have dealt with the solution of bi-level

problems that involve binary variables in both levels (Scaparra and Church, 2008; Brown et al.,

2009; Nandi et al., 2016). Moore and Bard (1990) discussed the di�culties faced in the solution

of bi-level mixed-integer programming.

In our paper, the binary variables exist in both inner and outer levels. Therefore, we cannot

utilize duality of the inner problem to make the whole problem as a nested min-min problem.

Additionally, we are solving a risk-averse stochastic mixed-integer problem, which also makes our

problem computationally challenging. Therefore, to solve the formulated model, we develop a

customized constraint and column generation (CCG) algorithm based on the algorithm proposed

by Nandi et al. (2016). Algorithms using a similar framework are also proposed by Brown et al.

(2009) and Alderson et al. (2014). However, each of these previous studies are on deterministic

bi-level problems. We extend their framework to incorporate the solution strategies for stochastic

mixed-integer programming and conditional-value-at-risk framework. The solution of the outer
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level problem (i.e., the master problem) provides the lower bound of the algorithm. The upper

bound of the algorithm is obtained by solving the scenario sub-problems (MaxLossMIP (10))

for a given solution from the outer level problem.

4.1 Upper Bound

A feasible solution of the outer level problem (MinMaxExpLoss (8)) provides a feasible inter-

diction plan of the network defender. For a given feasible interdiction plan (x̂k) at an iteration

k, the attackers try to maximize their gain. We solve each scenario sub-problem (MaxLossMIP

(10)) at iteration k for a given interdiction plan. To compute upper bound at an iteration k, we

calculate the expected value of the optimal objective values of the scenario sub-problems as well

as the CVaR at con�dence level α. Therefore, Q(x̂k) =
∑

s∈S p
sQs(x̂) + λ(η + 1

1−α
∑

s∈S p
svs)

is the upper bound of our algorithm at iteration k. As our problem is a minimization problem,

the upper bound (ub) up to iteration k is the minimum of Q(x̂k) found through iteration k, i.e,

ub ≤ Q(x̂k
′
) for k′ = 1, . . . , k.

4.2 Lower Bound

To compute the lower bound of our algorithm, we use a technique similar to the MinAtRisk

model of Nandi and Medal (2016) that minimizes the number of nodes at risk of infection from

other already-infected nodes. In this research, we formulate an algorithm for solving our speci�c

defender's problem. We refer to our developed algorithm for calculating the lower bound as

MinMeanRisk(Āk), where Āk is the set of arcs used by the attackers up to iteration k. We

obtain this set by solving the MaxLossMIP(10) problem at iteration k of the algorithm. Let

f(Āk) be the optimal objective value and x̂k be the optimal solution of theMinMeanRisk(Āk)
model, then the current lower bound (lb) at iteration k is the maximum of f(Āk) found through

iteration k, i.e., lb ≥ f(Āk′) for k′ = 1, . . . , k.

The model providing the lower bound is formulated as follows (MinMeanRisk(Āk)):
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f(Āk) = min θ (11a)

s.t. θ ≥
∑
s∈S

ps

 ∑
t∈N ks

T

ltz
ks
t


+λ

(
ηk +

1

1− α
∑
s∈S

psvks

)
∀k ∈ K (11b)

zksj ≥ psijzksi − xij ∀(i, j) ∈ Aks, k ∈ K, s ∈ S (11c)

zksi = 1 ∀i ∈ N ks
I , k ∈ K, s ∈ S (11d)∑

(i,j)∈A

cdijxij ≤ bd (11e)

vks ≥
∑
t∈N ks

t

ltz
ks
t − ηk ∀k ∈ K, s ∈ S (11f)

xij ∈ {0, 1} ∀(i, j) ∈ A (11g)

ηk ∈ R ∀k ∈ K (11h)

vks ≥ 0 ∀k ∈ K, s ∈ S (11i)

In this formulation, the objective function (11a) and the constraint (11b) together ensure

that the objective of this model is to minimize the maximum of all the mean-risk expected

maximum losses through iteration k. Each constraint (11c) ensures that if a node j is at risk of

breach through arc (i, j) in an attack scenario s at iteration k, this arc must be interdicted to

protect the node j from being breached by an attacker. Therefore, to protect a node j, all the

incoming arcs need to be interdicted if the tail node of the arc is at risk of breach. The initially

vulnerable nodes used in an attack scenario s at iteration k are always at the risk of breach.

This condition is satis�ed by the constraints (11d). Constraint (11e) represents the defender's

budget constraint. Each of the constraints (11f) computes the excess loss corresponding to the

attack scenario s at iteration k.

In this formulation, we generate a new set of variables for the nodes and arcs used in the

attack scenarios through iteration k. Also, we generate the associated constraints (11b), (11c),

(11d), and (11f) to represent the connectivity of the nodes. To distinguish among di�erent

attack scenarios, a new variable zksj is generated for node j if the node is used in attack scenario

s at iteration k. At each iteration of the MinMeanRisk(Āk) model, the constraints (11b) force
the lower bound closer to optimal solution, which resembles an optimality cut in a L-shaped

algorithm. As the algorithm proceeds, the new variables and constraints associated with the

attack scenarios are added to the model, and the solution of the master problem moves towards

the optimal solution.

The proof of theorem 1 explains the theoretical justi�cation that the master problem provides

a valid lower bound to the algorithm.

Theorem 1. The master problem (MinMeanRisk) provides a valid lower bound.

Proof. According to Nandi et al. (2016), an attack is a tree in the attack graph. In our Min-

MeanRisk (11) formulation, the set of constraints (11c), (11d), and (11f) add | S | attack
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trees to the attack graph used by the master problem at each iteration of the algorithm. Here,

s ∈ S stands for the scenario index. The fact that each distinct attack tree corresponding to a

scenario in a set is due to the distinct attacker budgets in the scenarios. The master problem

formulation adds k distinct sets of | S | attack trees through iteration k. Since a subset of all

the possible alternative sets of attack trees are added to the MinMeanRisk(11) formulation

through iteration k, the objective value of the master problem provides a lower bound to the

minimization problem.

4.3 CCG Algorithm

The complete pseudocode of the customized constraint and column generation algorithm, so

called because new variables and constraints are added at each iteration, is demonstrated in

Algorithm 1.

Algorithm 1 Constraint and Column Generation Algorithm

1: function ConstraintandColumnGeneration

2: initialize. Set ub←∞, lb← 0, k ← 1; ε←a small number, and x∗ ← 0
3: while ub− lb > ε do
4: Solve master problem MinMeanRisk(11), returning f(Āk) and x̂k.
5: if f(Āk) > lb then lb← f(Āk) and x∗ ← x̂k.

6: Solve subproblemMaxLossMIP(x̂k) ∀s ∈ S, returning optimal attack plans f̂ks and
set of nodes N ks and arcs Āks used in attacks.

7: Compute Q(x̂k) :=
∑

s∈S p
sQs ˆ(x) + λ

(
η + 1

1−α
∑

s∈S p
svs
)
.

8: if Q(x̂k) < ub then ub← Q(x̂k) and x∗ ← x̂k.

9: if ub− lb ≤ ε then break. Otherwise, go to next step.

10: Create variables zksi for the nodes used in attacks, and add constraints (11b),
(11c),(11d), and (11f) to the master problem corresponding to N ks and Āks.

11: k ← k + 1.

12: return Optimal interdiction plan, x∗

To provide a better explanation of the CCG algorithm, a few steps of the algorithm are

demonstrated with a simple numerical example in Appendix A.

The proofs of Lemma 1 and Theorem 2 in Appendix B explain the theoretical foundation of

the convergence of our algorithm.

4.4 Acceleration Techniques

In the MinMeanRisk algorithm, we are adding variables and constraints for each node and

arc used in a new attack at each iteration. Due to adding the large number of variables and

constraints in each iteration, the master problem computation time increases exponentially in the

problem size. To improve the computational e�ciency, we implement the following enhancements

to the algorithm.
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4.4.1 Path-Based Formulation

Nandi et al. (2016) showed that an attacker solution can be represented by a distinct set of

paths. We run a search algorithm on the attacker solutions of each scenario at each iteration to

�nd the set of paths used by the attackers and compute the probability of success of an attack

through a path. Once a new path is found in an iteration, we add a path variable (rp) and

the associated constraints to the master problem. If a path is found that was already used in

a previous attack scenario, we also add the path to the associated constraints. The path-based

formulation (MinMeanRiskPath) of the master problem is as follows:

f(Āk) = min θ (12a)

s.t. θ ≥
∑
s∈S

ps

∑
p∈Ps

k

lbpP
s
p (1− rp)


+λ

(
ηk +

1

1− α
∑
s∈S

psvks

)
∀k ∈ K (12b)

rp ≤
∑

(i,j)∈Ap

xij ∀p ∈ ∪k∈K,s∈SPsk (12c)

rp ≤ 1 ∀p ∈ ∪k∈K,s∈SPsk (12d)∑
(i,j)∈A

cdijxij ≤ bd (12e)

vks ≥
∑
p∈Ps

k

lbpP
s
p (1− rp)− ηk ∀k ∈ K, s ∈ S (12f)

xij ∈ {0, 1} ∀(i, j) ∈ A (12g)

ηk ∈ R ∀k ∈ K (12h)

vks ≥ 0 ∀k ∈ K, s ∈ S (12i)

rp ≥ 0 ∀p ∈ ∪k∈K,s∈SPsk (12j)

Each constraint (12b) computes the mean-risk expected maximum loss at iteration k. The

objective (12a) and constraints (12b) together ensure that the algorithm minimizes the max-

imum of all the mean-risk expected maximum losses over the iterations up to |K|. For each

path p, each pair of the constraints (12c) and (12d) ensures that the path is interdicted if only

one arc in that path is interdicted. Constraint (12e) represents the budget limitation of the

defender. Constraints (12f) compute the excess loss over all the scenarios in each iteration. The

binary restrictions of the interdiction variables are imposed by constraints (12g). Constraints

(12h), (12i), and (12j) stand for the sign restrictions of the associated variables. This Min-

MeanRiskPath formulation adds much fewer variables and constraints to the master problem

at each iteration than the previous MinMeanRisk(11) formulation, thus reducing the master

problem computation time.
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4.4.2 Multiple Sub-Problem Solutions (Ms)

In our model, each scenario represents an attacker problem or the sub-problem. If we add

only one solution from each scenario sub-problem to the master problem at each iteration,

the algorithm runs through a large number of iterations until enough attacker solutions are

added for convergence. To reduce the number of iterations and thus ensure quick convergence,

we add multiple optimal and sub-optimal solutions of a scenario sub-problem to the master

problem. (The Gurobi optimizer (Gurobi Optimization Inc., 2017) provides multiple optimal and

sub-optimal solutions to the attacker problems). Adding these multiple sub-problem solutions

to the master problem reduces the number of iterations and the average computation time.

Computational experiments demonstrate that adding the best 30% of solutions provides the

best results.

4.4.3 Trust Region Constraints (Tr)

At the initial iterations of the MinMeanRiskPath(12) formulation, the model produces very

divergent solutions, resulting in a long time to convergence. To stabilize the master problem

solution at the initial iterations, we add a trust region cut to the master problem in the early

iterations of the algorithm. If x̂k is the master problem solution for iteration k and X̂ k1 = {(i, j) :

x̂kij = 1} then the trust region cut added to the master problem at iteration k + 1 is as follows:

∑
(i,j)/∈X̂k

1

xij +
∑

(i,j)∈X̂k
1

(1− xij) ≤ 0.40× 2× | X̂ k1 | (13)

This constraint (13) ensures that the maximum change in the arc interdiction between it-

erations k and k + 1 is for 40% of the arcs. The left side of the constraint (13) calculates the

Hamming distance (Hamming, 1950) between the interdiction plans of iteration k and iteration

k+ 1. The right side of the constraint (13) forces that among the interdicted arcs at iteration k,

a maximum of 40% can be replaced at iteration k + 1. Experiments show that the trust region

cut reduces the master problem solution time and the algorithm runtime.

4.4.4 Heuristic Solution to Master Problem (Hf)

To obtain a better solution of the master problem quickly, we use a heuristic to generate a

solution used as a warm start to the master problem solution. Our heuristic is similar to the

greedy heuristic proposed by Toyoda (1975) and Nandi et al. (2016). The heuristic method is

shown in Algorithm 2.
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Algorithm 2 Greedy Heuristic Generating Initial Solution of the Master Problem

1: function GreedyHeuristic

2: initialize. Set of arcs to be interdicted, x← ∅, and total cost of interdiction, TCost← 0.
3: while TCost+ cdij ≤ bd do
4: Compute Scoreij =

LossReductionij

cdij
for each arc not interdicted.

LossReductionij = Current MRExpLoss - MRExpLoss after interdicting arc (i, j)
5: Interdict arc having maximum Scoreij , and TCost← TCost+ cdij .
6: if TCost > bd then break.

7: return Set of interdicted arcs, x

4.4.5 Separation of Sub-problem Solutions (Ss)

At each iteration of the algorithm, we add an attacker solution for each scenario sub-problem

to the master problem. To add more di�erent attacker solutions to the master problem, we

add a constraint to each scenario sub-problems at the �rst few iterations of the algorithm that

forces the sub-problems to generate di�erent attack plans between two consecutive iterations.

These sub-problem separation constraints ensure that enough attacker solutions are explored

more quickly by the master problem and thus signi�cantly reduce both number of iterations to

converge and average computation time.

Assume that f̂ks is the solution of the scenario sub-problem s at iteration k and F̂ks1 =

{(i, j) : f̂ksij = 1}. Then, we add the following constraint to the scenario sub-problem s at

iteration k + 1.

∑
(i,j)/∈F̂ks

1

fksij +
∑

(i,j)∈F̂ks
1

(1− fksij ) ≥ 0.10× 2× | F̂ks1 | (14)

The left side of the constraint (14) computes the Hamming distance between the optimal

attack plans of scenario s at iterations k and k + 1. The right side of the constraint (14) forces

that at least 10% of the arcs chosen by the optimal attacker solution of scenario s at iteration

k should not be selected by the optimal attacker solution of scenario s at iteration k + 1. We

add these constraints at the few initial iterations of the algorithm. This is a novel acceleration

technique, and the experiments show that this reduces the average master problem computation

time by approximately 18%.

5 Numerical Experiments

We performed computational experiments to evaluate the performance of our risk-averse bi-level

stochastic programming model in minimizing the mean-risk expected maximum loss from cyber-

attacks. We analyzed the e�ects of the model parameters and the topological attributes of the

attack graphs on the computation time of the algorithm. We conducted all the experiments on a

laptop with an Intel core i7 2.80GHz processor and 8GB RAM. The algorithms were implemented

in Python 2.7 with the Gurobi optimizer (Gurobi Optimization Inc., 2017).

20



5.1 Parameter Set-up

We performed experiments on synthetic attack graphs generated using the same approach as in

Nandi et al. (2016). We refer the readers to Nandi et al. (2016) for more detail on the attack graph

generation procedure. We conducted numerical experiments using four di�erent sizes of attack

graphs each having �ve levels to demonstrate the e�ects of network topology on computation

time. The following graph parameters were generated using a uniform distribution: breach loss

of the goal nodes, cost of attack through each arc, and cost of deploying countermeasure on

each arc. The mean probabilities of success of attack through arcs were also generated using a

uniform distribution.

We modeled the random attack budget using normal and Weibull distributions. To con-

struct a right-tailed asymmetric attacker budget distribution, we used Weibull distribution. We

discretized the continuous normal and Weibull distribution to obtain discrete attacker budget

distribution. To demonstrate the e�ects of the risk parameters, we performed experiments with

two di�erent levels of con�dence, α and several levels of risk coe�cient, λ. Table 2 shows the

di�erent parameters along with their values used in our experiments. The base con�gurations

of the parameters are shown in boldface type in Table 2. In the numerical experiments, all

parameters are set at their base values unless otherwise speci�ed.

Table 2: Parameters and their values used in the experiments.

Parameters Values

Network size (nodes, | N |) 50, 100, 150, 200

Arcs, | A | ≈2.15×| N |
Breach loss of the goal nodes ∼uniform(500, 1500), ∼uniform(200,

2000)

Cost of attacks through arcs, caij ∼uniform(10, 30)

Cost of countermeasures deployment

on arcs, cdij
∼uniform(10, 30)

Defender Budget, bd 100, 150, 200, 255

Attacker Budget, ba ∼normal(300, 60), ∼Weibull(100, 200),

∼Weibull(50,500)

Probability of attack success, pij ∼uniform(0, 1)

Number of scenarios, | S | 40, 100, 150

Level of con�dence, α 0.7, 0.9

Risk coe�cient, λ (0�100)

5.2 Runtime and Solution Quality of Solution Procedures

This section presents the results on the computation time of the path-based CCG algorithm,

e�ects of the acceleration techniques on the computational speed and solution quality of the exact

algorithm, e�ects of the network size and the number of scenarios on the algorithm runtime.

We performed all computational experiments with the path-based formulation of our CCG

algorithm (MinMeanRiskPath(12)), as it was shown in Nandi et al. (2016) that the path-

based formulation outperforms the node-based formulation on computational speed. In this sub-

section, we set the parameter values as follows: bd = 100, ba ∼ w(80, 180) for 50-node networks;
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bd = 150, ba ∼ w(100, 200) for 100-node and 150-node networks; bd = 200, ba ∼ w(150, 250) for

200-node networks; and λ = 0.1 for all problem instances.

The total runtime, master problem computation time, and solution quality of the basic

path-based algorithm (EA) and the acceleration techniques are presented in Table 3, Table 4,

and Figure 4. The notations used in Table 3, Table 4, and Figure 4 represent the following:

EA - Basic path-based algorithm (MinMeanRiskPath(12)) with no acceleration technique;

All_ACC- Path-based algorithm with all acceleration techniques, MMs - Path-based algorithm

with multiple attacker solutions (Ms) for each attack scenario at an iteration; MTr - Path-based

algorithm with trust region cut constraints (Tr) added to the master problem; MHf - Path-based

algorithm with a heuristic to provide a warm start to the master problem solution; MSs - Path-

based algorithm with sub-problem separation constraints added to the master problem; MNl -

Path-based algorithm with a limit to the number of nodes that the master problem solver can

explore in the master problem branch-and-bound tree; MTrSsNl - Path-based algorithm with

trust region cut constraints, sub-problem separation constraints, and node limit method added

to the master problem.

The total runtime and the master problem computation time of the basic MinMean-

RiskPath algorithm (EA) and all the acceleration techniques (All_ACC) for four di�erent

sizes of attack graphs are provided in Table 3. It is seen that the computation time increases

at a high rate as the size of the network increases. The computation time of the EA is espe-

cially sensitive to the network size. The basic path-based algorithm cannot solve most of the

150-node and 200- node networks within 2 hours as shown in Table 3. However, implementing

the acceleration methods enables the algorithm to solve 150-node and 200-node networks within

a reasonable time; therefore, with the acceleration techniques, the path-based CCG algorithm

can solve large network problems within a reasonable time.

Experiments show that in the initial iterations of the algorithm, the solution of scenario

sub-problems consumes more time than the master problem solution time. However, as the

number of iterations increases, more variables and constraints are added to the master problem

resulting an increase in the size of the master problem and thus a sharp increase in the master

problem computation time. As a result, the contribution of the master problem solution time to

the total runtime of the EA is larger than the contribution of the master problem solution time

to the total runtime of the All_ACC method. This is likely because the acceleration methods

focus on reducing only the master problem solution time. This is evident from the comparison

of the Mtime columns of the exact algorithm (EA) and the accelerated algorithm (All_ACC)

in Table 3.

From Table 3 we observe that the solution times of the networks of the same size varies

signi�cantly. Because the attack graphs are generated randomly which makes the topologies of

the graphs to be di�erent. These di�erent topologies cause the solution times of the same size

graphs to be di�erent. Moreover, the di�erence in graph topology also a�ects the performance

of acceleration techniques. The randomly generated probabilities of attack success on arcs also

causes the computation times of the same size networks to be di�erent. As a result, it is observed

from Table 3 that in some cases the solution time of a 150-node network is more than the solution

time of a 200-node networks in All_ACC method.
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Table 3: Growth of the computation time (clock seconds) of Exact algorithm (EA) and All_ACC
(MMsTrHfSsNl) method with graph size. Four random instances of graphs are used for each
graph size. All graphs are of level = 5. Asterisk (*) denotes those graphs that cannot be solved
in 2 hours. Runtime and Mtime denote total runtime, and master problem computation time,
respectively, for problems with 100 scenarios.

Graph Size All_ACC EA

Nodes Arcs Runtime Mtime Runtime Mtime

50 118 193.07 3.72 428.89 35.61

50 126 215.58 2.77 592.70 10.66

50 119 182.72 3.22 286.72 32.13

50 116 130.24 2.07 180.59 3.66

100 237 419.17 10.77 711.66 87.13

100 235 949.60 17.17 3490.75 1306.01

100 230 1143.75 17.29 3096.35 1023.50

100 248 808.70 5.94 4074.57 676.07

150 374 1861.49 20.53 * *

150 374 1999.04 18.64 * *

150 345 869.49 8.62 2843.56 619.10

150 352 2089.01 16.91 * *

200 431 3246.30 20.67 * *

200 437 2050.04 30.72 * *

200 425 2910.97 28.29 * *

200 424 1783.49 27.10 * *

The e�ects of di�erent acceleration techniques to the average computation time of the basic

path-based algorithm are presented in Figure 4, which demonstrates that most of the acceleration

techniques contribute to reduce the average computation time of our path-based algorithm.

Especially, the node limit method (MNl) reduces the average computation time of the EA by a

larger percentage compared to all other acceleration techniques when applied individually. The

trust region cut (MTr) reduces the EA computation time in some instances, and sometimes the

computation time is higher, which slightly increases the average computation time. The sub-

problem separation method (MSs) provides better reduction in the average computation time

than do the master problem heuristic (MHf) and trust region cut (MTr) methods. This novel

acceleration technique provides an average reduction of 18% to the master problem computation

time of the EA for the 100-node networks. The average computation time of the master problem

heuristic (MHf) method for the 100-node networks is larger than the EA. The average reductions

in computation time with MNl, MTrSsNl, and All_ACC method are almost the same.

From the experiments, we see that the application of MMs method reduces the average

computation time of the EA in solving the 50-node network. However, in solving the 100-node

networks with MMs method, the computation time becomes higher than the EA time. The

objective of MMs method is to add more attacker solutions to the master problem in each

iteration so that the algorithm converges within a small number of iterations. However, if the

size of the network is large, then a large number of variables and constraints are added to the

master problem in each iteration, which increases the solution time of each iteration. In a 50-

node network, the problem size is not as large as in a 100-node network, and each iteration is
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Figure 4: Average computation times (clock seconds) of the exact algorithm and the acceleration
techniques for four 100-node attack graphs of level 5.

not taking longer time. Therefore, it is possible in a 50-node network to reduce the computation

time by reducing the total number of iterations. As our problem is stochastic, in a 100-node

network, the problem size increases signi�cantly due to the addition of multiple solutions for

each attack scenario in each iteration. Therefore, despite reducing the total number of iterations,

the solution time of each iteration increases by a large amount. This causes the MMs method

to take longer time than EA in solving larger networks.

Table 4 demonstrates the mean-risk expected maximum loss (MRExpLoss), master problem

computation time, and the solution quality of the acceleration techniques compared to the exact

algorithm. We see from Table 4 that the master problem computation times of the 100-node

networks from the All_ACC method are higher than the master problem computation times

from the MNl and MTrSsNl method. This is because the computation time of the MMs and

MHf methods for 100-node networks are higher than the computation time of EA. Therefore,

removing MMs and MHf from the All_ACC method reduces the master problem computation

time of the 100-node networks, which is evident from the master problem computation times of

the MTrSsNl method. However, removing multiple sub-problem solution (Ms) and the master

problem heuristic (Hf) from the All_ACC method impairs the solution quality. The MMs and

MHf tend to improve the poor solution resulting from the node limit method. The MHf method

increases the solution quality as it provides a better start-up to the master problem solver.

Therefore, although the average master problem computation time of the 100-node networks

from the All_ACC method is slightly higher compared to the MNl and MTrSsNl method, the

All_ACC method provides better solution quality than MNl and MTrSsNl as shown in Table

4. We also see from Table 4 that the solutions provided by the MNl, MTrSsNl, and All_ACC

methods are optimal for all the 50-node network instances.

Table 5 shows the variation of computation times with the number of scenarios in the stochas-

tic programming problem. The computation time of the algorithm increases as the number of

scenarios in the problem increases.

Experiments also show that the computation time increases as the defender's budget in-

creases. With more budget, the defender can interdict more attack paths, which requires ex-

ploring larger combination of possible attack paths and therefore increases the computation

time.
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Table 4: Solution quality and computation time (clock seconds) of the acceleration techniques
(MNl, All_ACC, and MTrSsNl) compared to the exact algorithm (EA). Master model node
limit = 1. MRExpLoss, Mtime, and %∆ denote mean-risk expected maximum loss, master
problem computation time, and the percentage by which theMRExpLoss from the acceleration
methods is larger than the MRExpLoss from EA, respectively.

Graph Size EA MNl All_ACC MTrSsNl

Nodes MRExpLoss Mtime Mtime %∆ Mtime %∆ Mtime %∆

50 175.87 35.61 4.39 0 3.72 0 5.67 0

50 258.88 10.65 5.66 0 2.77 0 7.05 0

50 251.63 32.13 4.94 0 3.22 0 4.55 0

50 225.82 3.66 1.68 0 2.07 0 1.02 0

100 315.16 87.13 7.12 12.49 10.77 11.47 4.68 12.47

100 426.49 1306.01 10.02 3.11 17.17 3.11 4.22 3.11

100 521.92 1023.5 5.69 12.12 17.29 1.00 6.59 10.56

100 555.65 676.07 4.51 3.17 5.94 2.65 5.31 3.17

Table 5: Increase in computation time (clock seconds) with number of scenarios. Two random
instances of graphs are used for each graph size of levels = 5. Runtime represents the total
runtime of the All_ACC method for 100 and 150 scenarios.

Graph Size Runtime

Nodes Arcs | S |= 100 | S |= 150

50 118 193.07 397.07

50 126 215.58 359.57

100 237 419.17 636.99

100 235 949.60 1285.61

150 374 1861.49 2680.61

150 374 1999.04 5477.53

200 431 3246.30 7095.72

200 437 2050.04 3498.20

5.3 E�ect of Defender's Budget on Mean-Risk Expected Maximum Loss

The variation of mean-risk expected maximum loss with defender's budget for four 100-node

graphs and the average mean-risk expected maximum loss of the four graphs are also shown in

Figure 5. For a speci�c budget, the average loss is computed by simply averaging the losses

of the four graphs. As the defender's budget increases, she can interdict more attack paths

resulting in a lower mean-risk expected maximum loss. However, with budget increment, the

loss does not decrease at a constant rate. This is because, at the beginning, the defender can

overcome the relatively easy security challenges with a small budget increase after which the

same budget increase is not enough to protect the next critical assets. The network defender

can use Figure 5 to choose the amount she has to invest in network interdiction depending on

the amount of mean-risk expected maximum loss she is willing to compromise. For example, for

the attack graph 4, a network defender may choose to invest 400 units because at this point the

curve levels o�, resulting in a small marginal decrease in mean-risk expected maximum loss.
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Figure 5: Variation of mean-risk expected maximum loss with defender's budget for four di�erent
graphs each with 100 -nodes.

5.4 E�ects of Risk Parameters on Interdiction Policy, CVaR, and Mean-Risk

Expected Maximum Loss

In our risk-averse stochastic network interdiction framework, we have two risk parameters: level

of con�dence, α, and the risk coe�cient, λ. The experimental results in this section show the

e�ects of incorporating the risk measure in minimizing the loss from cyber-attacks with a random

attacker budget. Figure 6 shows the variation of mean-risk expected maximum loss, expected

maximum loss, and conditional-value-at-risk with the risk coe�cient (λ) for two di�erent levels

of α. Conditional-value-at-risk at a given level α quanti�es the expected value of the worst

(1 − α)% of the losses. Figure 6 demonstrates that the mean-risk expected maximum loss and

the conditional-value-at-risk become larger for larger α levels. A higher level of α means that

the decision maker is concerned about the realizations corresponding to larger losses. Therefore,

as the α level increases, the corresponding value-at-risk increases and the CV aRα increases.

Thus, the larger value of α results in more conservative policies and provides more concern to

the scenarios corresponding to larger losses.

The risk coe�cient (λ) represents the relative importance between the expected maximum

loss and the CVaR component. As the value of λ increases, the relative importance of the CVaR

component increases and thus leads to more risk-averse policies. It is evident from Figure 6b

that the CVaR component decreases as the value of λ increases. As the value of λ increases,

relatively less importance is given to the minimization of the expectation criteria, and thus the

expected maximum loss increases which is demonstrated in Figure 6c. With more risk-averse

policies, the mean-risk expected maximum loss also increases which is demonstrated in Figure

6a. It is seen that as the value of λ or α increases, the mean-risk expected maximum loss

increases.

An important �nding of our research is that the e�ect of λ parameter on CV aRα depends

on the distribution of the attacker budget. If the distribution is symmetric as shown in Figure

7a, the CV aRα decreases by a smaller amount as the value of λ increases compared to a right-

tailed asymmetric distribution. We see from Figure 7a that the CV aR0.9 decreases by 10.56 %
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(a) Mean-risk expected maximum loss vs λ (b) Conditional-value-at-risk vs λ

(c) Expected maximum loss vs λ. Here, the varia-
tion of expected maximum loss with λ is same for
two α levels.

Figure 6: Variation of mean-risk expected maximum loss, expected maximum loss, and
conditional-value-at-risk with risk coe�cient λ for two di�erent con�dence levels, α = 0.7 and
α = 0.9. Other parameters are: |N | = 50, |S| = 40, bd = 255, ba ∼ w(50, 500).

as the value of λ increases from 0 to 10. In a symmetric distribution of the attacker budget,

the probability of the scenarios with large attacker budget is high. Therefore, the number of

scenarios with high attacker budget is large and thus the frequency of the larger losses is also

high in the distribution of losses from the scenarios. In this case, the objective of minimizing

the expectation criteria is also partially taking into account the objective of minimization of the

expected maximum loss from the most damaging attack scenarios. In other words, providing

more importance to minimize the expected value of the larger losses separately is not highly

signi�cant as the optimal interdiction decision under a risk-neutral preference is also taking into

account the minimization of larger losses.

On the other hand, if the distribution of attacker budget is a right-tailed asymmetric distri-

bution (Weibull), the percentage decrease in CV aRα becomes larger as the value of λ increases.

We see from Figure 7b that for the right-tailed attacker budget distribution, the reduction in

CV aR0.9 is 29.98% as the value of λ increases from 0 to 10. In a right-tailed asymmetric distri-

bution, the probability of the scenarios with large attacker budget is very small. Therefore, only

few scenarios have an extremely large attacker budget, and the frequency of larger losses is also

low. As the expectation criteria is concerned with minimizing only the expected maximum loss,

in this case, the risk-neutral approach is minimizing only the expected maximum loss over all

scenarios and thus is not considering minimization of the few larger loss scenarios. Therefore,

as the value of λ increases, more importance is given to minimize the mean of the larger loss
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scenarios, and therefore the optimal interdiction decision is made to minimize the CV aRα.

(a) Symmetric distribution of attacker budget. At
λ = 0, CV aR0.9 = 1003 and at λ = 10, CV aR0.9 =
897

(b) Asymmetric distribution of attacker budget. At
λ = 0, CV aR0.9 = 1521 and at λ = 10, CV aR0.9 =
1065

Figure 7: Variation of the e�ect of λ on CV aRα with the distribution of attacker budget

Moreover, in reality, most cyber-attacks are conducted by attackers with low attack capabil-

ity, which we represent in our problem as attacker budget. Only a few attackers have the skill

to cause a severe loss to an organization, meaning that the distribution of real-world attacker

capabilities is also likely to be a right-tailed asymmetric distribution. Therefore, our model

better represents this real-world context.

5.5 Comparison with Deterministic and Risk-Neutral Methods

In this section, we compare the performance of our risk-averse stochastic programming approach

with two existing approaches: 1) a deterministic approach that accounts for only a single attacker

with a �xed budget and 2) the risk-neutral approach that ignores the risk of the most damaging

cyber-attacks.

5.5.1 Comparison with Deterministic Approach

To evaluate our risk-averse approach against the existing deterministic approach, we compare

our method with Nandi et al. (2016), where the authors model the network interdiction problem

accounting for a single attacker with a �xed budget. This comparison answers the following

research question: how much improvement in solution quality do we obtain by modeling mul-

tiple attackers via an uncertain attacker budget as opposed to a single attacker with a known

�xed budget? In standard stochastic programming with a risk-neutral objective, this question

is answered by computing a metric called value of stochastic solution (VSS), which measures

the cost of not considering the randomness in the stochastic parameters. This VSS is computed

as: V SS = EV P−SP
SP , where the EVP stands for the expected cost that results from using the

expected value problem solution and SP stands for the expected cost provided by the stochastic

problem solution. The expected value problem (a.k.a, mean value problem) is a deterministic
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problem that takes the expected value of the random parameters and then solves the result-

ing deterministic program. The expected value problem of our risk-averse stochastic network

interdiction model is the same as the deterministic model of Nandi et al. (2016).

As in this paper, we are concerned about risk-averse stochastic programming problem, we

adopt an equivalent measure of VSS for mean-risk stochastic programs proposed by Noyan

(2012). We refer to this measure as mean-risk value of stochastic solution (MRVSS), which is

computed using the following formula:

MRV SS =
MREV P −MRSP

MRSP
(15)

MREV P = E(f(x̄(ξ̄), ξ) + λCV aRα(f(x̄(ξ̄), ξ) (16)

MRSP = E(f(x, ξ)) + λCV aRα(f(x, ξ)) (17)

where x̄(ξ̄) represents the optimal solution of the expected value problem, and x stands

for the optimal solution of the stochastic problem. MREVP and MRSP represent the mean-

risk expected cost resulting from using the expected value problem solution and the stochastic

problem solution, respectively. The larger the value of MRVSS, the higher the signi�cance of

incorporating randomness in the parameters of a risk-averse stochastic programming model with

a speci�ed risk measure compared to solving the deterministic problem.

We conduct computational experiments to explore the signi�cance of incorporating uncer-

tainty (randomness) in the attacker budget in our mean-risk network interdiction model and

thus evaluate the performance of our model against Nandi et al. (2016). As the attackers have

di�erent budget values, an interdiction plan generated based on a �xed attacker budget (or

the expected attacker budget) is likely to be erroneous and results a positive MRVSS. Table

6 demonstrates the MRVSS for di�erent values of λ and α, where we see that the value of

stochastic solution for the risk neutral approach (λ = 0) is small. This means that modeling

randomness in the attacker budget using a risk-neutral approach does not provide a more robust

interdiction plan than the deterministic problem. In other words, the risk-neutral special case

of our model provides small improvement in reducing the loss from cyber-attacks compared to

the deterministic approach of Nandi et al. (2016).

However, in more risk-averse circumstances, a risk-averse approach results a larger MRVSS

than a risk-neutral approach, as shown in Table 6. We see that the MRVSS increases as the

risk parameters λ and α increases. As the risk coe�cient (λ) increases, meaning preferences

for risk-aversion increases, the deterministic model performs poorly compared to the risk-averse

stochastic programming model. In other words, as the decision maker becomes more risk-

averse, the cost of ignoring uncertainty in attacker budget increases, and thus the signi�cance

of solving a mean-risk stochastic model increases. This is because, unlike the deterministic

and risk-neutral model, with higher risk-aversion preferences, the risk-averse model prioritize

minimizing the expected value of the larger losses more compared to minimizing the overall

expected loss. This results in a lower mean-risk expected maximum loss in using a risk-averse

solution as opposed to using a deterministic or a risk-neutral solution. Therefore, in the presence
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of uncertainty in attacker capabilities, a risk-averse approach provides a more robust interdiction

decision than a deterministic as well as a risk-neutral approach. Thus we can claim that our

risk-averse approach signi�cantly outperforms the deterministic approach of Nandi et al. (2016),

particularly in a risk-averse situation.

Table 6: Variation of MRVSS with risk parameters. Other parameters are: |N | = 50, |S| =
40, bd = 255, ba ∼ w(50, 500).

Risk Coe�cient (λ)
MRVSS (%)

α = 0.7 α = 0.9

0 6.74 6.74

0.1 6.79 6.98

0.5 16.13 19.19

1 23.01 27.40

5 35.08 41.82

10 37.56 44.78

5.5.2 Comparison with Risk-Neutral Approach

We evaluate the performance of our risk-averse stochastic programming approach with the risk-

neutral approach that does not account for the risk of most damaging cyber-attacks while com-

puting the optimal interdiction policy. To demonstrate the cost of ignoring the risk of larger

losses from the most damaging cyber-attacks, when the network defender is actually risk-averse,

we introduce a metric called value of risk-aversion (VRA) and compute using the following

formula:

V RA =
RNSP −MRSP

MRSP
(18)

RNSP = E(f(xRN, ξ)) + λCV aRα(f(xRN, ξ)) (19)

where xRN and RNSP stands for the optimal solution of the risk-neutral stochastic program

and the mean-risk expected maximum loss resulting from using xRN in a risk-averse situation,

respectively. Table 7 shows the variation of VRA with the risk parameters� risk coe�cient, λ

and level of con�dence, α, where we see that the VRA increases as the value of λ and α increases.

This means that as the network defender becomes more risk-averse, the risk-neutral stochastic

programming solution performs increasingly worse compared to the mean-risk stochastic pro-

gramming solution. With a larger λ, the network defender is more risk-averse; thus, using a

risk-neutral solution cannot minimize the expected value of the larger losses (CVaR), and re-

sults a higher mean-risk expected maximum loss. On the other hand, as a risk-averse model

prioritizes minimizing the risk of larger losses while computing the optimal interdiction policy,

the resulting risk-averse solution can better minimize the expected value of the larger losses in

addition to minimizing the expected maximum loss over all scenarios. Though the risk-averse

solution results in an increase in the expected maximum loss over all scenarios (Figure 6c) when

compared to a risk-neutral solution, the overall objective value (MRExpLoss) from using a

risk-averse solution is much smaller as opposed to that of risk-neutral solution. This is because
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a risk-averse solution minimizes the CVaR component by a larger percentage (Figure 6b), o�-

setting the increase in expected maximum loss. Thus, our results indicate that it is important

to use a risk-averse model to model a risk-averse network defender; a risk-neutral model is not

an adequate proxy.

With a larger α, the network defender is concerned about minimizing the larger loss scenarios,

which requires them to use a risk-averse solution. Therefore, the signi�cance of using a risk-

averse solution over a risk-neutral solution increases as α increases. Thus, in the presence of

uncertainty and high variability in attacker budget, a risk-averse model provides a more robust

solution than a risk-neutral one.

Table 7: Variation of VRA with the risk parameters. Other parameters are: |N | = 50, |S| =
40, bd = 255, ba ∼ w(50, 500).

Risk Coe�cient (λ)
VRA (%)

α = 0.7 α = 0.9

0.1 0 0

0.5 9.90 12.97

1 16.88 21.33

5 29.03 35.87

10 31.53 38.86

6 Conclusion

We studied the problem of optimally interdicting the cyber network of an organization from the

standpoint of a risk-averse network defender. In this paper, we presented a mean-risk bi-level

stochastic network interdiction model based on the concept of an attack graph. We adopted the

conditional-value-at- risk as a risk measure in our risk-averse model. Both inner and outer levels

of our model were formulated as mixed-integer linear programs. We developed a customized

constraint and column generation algorithm to incorporate the stochasticity and risk-aversion.

Several novel enhancement techniques were proposed to improve the computational e�ciency of

the base algorithm. We also employed a heuristic to provide a warm start to the master problem

solver.

Computational experiments show that the acceleration techniques signi�cantly improve run-

time. Implementing all the acceleration techniques together (All_ACC) provides better com-

putational speed than the individual techniques and better solution quality than the master

problem node limit method (MNl) and the master problem with trust region cut, sub-problem

separation, and node limit added together (MTrSsNl). Though MNl and MTrSsNl provides bet-

ter reduction of the master problem computation time than the All_ACC method, their solution

quality is poor. When applied individually, the master problem node limit method provides the

best computational e�ciency of all the acceleration techniques. However, this node limit method

also impairs the solution quality. The novel acceleration technique, sub-problem separation, pro-

vides an average reduction of 18% to the master problem solution time without a�ecting the

solution quality. In the accelerated algorithm (All_ACC method), the major contribution to the

total computation time is from the sub-problem solution time. This is because, the acceleration
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techniques only reduces the master problem solution time. Solution time increases with network

size and number of scenarios.

We also found that the mean-risk expected maximum loss decreases with the defender's

budget. However, the rate of change is not uniform with the defender's budget. The mean-risk

expected maximum loss decreases sharply at the beginning when it is easy for the defender to

overcome the relatively easy security challenges with a small increment of budget.

Our experiments provide insights into the e�ects of risk-aversion on the optimal interdiction

decision. The larger the value of the risk parameters, the more conservative the interdiction

policies. As the risk coe�cient (λ) increases, the optimal interdiction plan is generated by

assigning relatively more importance to minimizing the expected maximum loss from the most

damaging attack scenarios instead of minimizing expected maximum loss over all scenarios,

and thus conditional-value-at-risk at level α decreases. However, the e�ect of λ on optimal

interdiction policy and in turn on conditional-value-at-risk at level α depends on the distribution

of attacker budget. The e�ect of λ on conditional-value-at-risk is more evident when a few

attackers have extremely high budget, i.e., the distribution is heavy right-tailed. As the value

of α increases, the decision maker is more concerned with minimizing the larger loss scenarios,

leading to an increase in the value-at-risk and, in turn, increases the conditional-value-at-risk.

Taken together, the experimental results demonstrate the signi�cance of modeling uncer-

tainty in attacker budget through a mean-risk stochastic model. Modeling multiple attackers

via uncertain attacker budget in a risk-averse stochastic programming model provides more ro-

bust interdiction decision than that of a deterministic model with a single attacker. Results

demonstrate that our risk-averse stochastic programming approach substantially outperforms

the existing deterministic approach of Nandi et al. (2016). The mean-risk value of stochastic

solution increases as the decision maker becomes more risk-averse. Results also show that the

risk-averse model provides substantially robust interdiction decision than the risk-neutral model.

The value of risk-aversion increases as the network defender becomes more risk-averse.

6.1 Future Work

In this study, we assumed perfect interdiction� no attack is possible if a countermeasure is

deployed on an arc. However, this assumption could be relaxed to incorporate imperfect, multi-

level interdiction, where the higher the investment in countermeasure deployment on an arc,

the lower the probability of success of attack through that arc. This could be incorporated

by formulating the model as a stochastic program with decision�dependent uncertainty. In this

context, the �rst-stage decision of investing on countermeasure deployment a�ects the probability

of success of attacks and in turn a�ects the scenario probability. For details of this decision�

dependent uncertainty framework, we refer readers to Medal et al. (2016); Bhuiyan et al. (2019).

From a computational standpoint, we implemented enhancements to reduce the master problem

solution time only. Another extension could be to reduce the overall sub-problem solution time.

One way of doing this is to implement a progressive hedging algorithm that is easy to parallelize.

Also, the proposed model and algorithms could be implemented on real cyber networks rather

than synthetic ones.
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Appendices

A Algorithm Example

To demonstrate the solution algorithm, we describe the steps of the algorithm with the simple

example attack graph shown in Figure 3, where we consider a risk-averse network defender with

a budget of 1 unit. We consider two attackers with budgets of 2 and 3 units, respectively. The

attack cost and countermeasure deployment cost is 1 unit for all arcs. The risk coe�cient and

the level of con�dence are assumed to be 0.1 unit and 90 percent, respectively. Figure A.1

demonstrates the steps of the algorithm, where each of the sub-Figures of Figure A.1 represents

either the attacker's solution or the defender's solution. The dashed arcs represent the arcs

interdicted by the defender.

At iteration 1, there is no interdiction of arcs, the two attackers choose their optimal attack

plans to maximize the loss to the defender. Attacker 1 use the set of arcs {(0, 2), (2, 4)}

and the attacker 2 use the set of arcs {(0, 2), (2, 3), (2, 4)} as shown in Figure A.1a. These

attack plans of the two attackers result in a mean-risk expected maximum loss of 5.29 (=

0.5 × 3.86 + 0.5 × 5.496 + 0.1(5.33 + 1
1−0.9 × 0.5 × 0.17)) to the defender, which is the new

upper bound. Now, at the beginning of iteration 2, the defender takes into account the previous

attack plans of the two attackers and generates an interdiction plan that minimizes the mean-

risk expected maximum loss. Here, the optimal interdiction plan of the defender is to interdict

arc (0, 2) as shown in Figure A.1b, which protects the defender from incurring any loss. Given

that arc (0, 2) is interdicted, the two attackers choose new attack plans as shown in Figure A.1c

that results in a new upper bound of 3.22.

At iteration 3, the defender observes all the previous attack plans of iteration 1 and of

iteration 2 and interdict arc (2, 4), which results in a lower bound of 0.98. We see that as the

algorithm proceeds, the upper and lower bounds of the algorithm are updated gradually. This

process continues until the bounds of the algorithm converges to an optimal objective value,

which is 2.36 resulting from interdicting arc (2, 4).
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(a) Iteration 1: Attacker's solution. No in-
terdiction, the attack plans of two attackers
result in an upper bound = 5.29

(b) Iteration 2: Defender's solution. Opti-
mal interdiction results in a lower bound =
0

(c) Iteration 2: Attacker's solution. New
attack plans results the new upper bound
= 3.22

(d) Iteration 3: Defender's solution.
New interdiction plan results in a lower bound = 0.98

Figure A.1: Algorithm Example

B Proofs

Lemma 1. The master problem produces a new solution at each iteration until convergence.

Proof. We know that at each iteration of the algorithm, a set of | S | attack plans are generated
and added to the master problem, where s ∈ S is the scenario index. Assume that the master

problem solution x̂k at iteration k and the master problem solution x̂m at iteration m are

the same, where m < k. In this case, the set of the sub-problem solutions f̂m from iteration

m repeats at iteration k. Therefore, the optimal attack plans f̂ms in the set of sub-problem

solutions from iteration m are not interdicted by the master problem solution at iteration k.

Now, the master problem objective value f(Āk) at iteration k is at least as large as the mean-risk
expected maximum loss Q(x̂m) from the set of sub-problem solutions at iteration m. As the

current lb ≥ f(Āk) ≥ Q(x̂m) and current ub ≤ Q(x̂m), lb ≥ ub which is the convergence criteria

of the algorithm. Therefore, at each iteration, the master problem must generate a new solution

to interdict the set of attack plans generated until convergence.
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Theorem 2. The CCG algorithm converges within a �nite number of iterations.

Proof. From Lemma 1, we see that at each iteration of the algorithm, the master problem

generates a new feasible interdiction plan. Suppose there are Z feasible interdiction plans. The

algorithm will continue through a maximum of Z iterations and add all feasible sets of attack

plans. Thus, running through Z iterations, the algorithm will explore all the possible attack

plans, implying that the algorithm converges within Z iterations.
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