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Abstract

The ubiquitous nature of wireless networks makes them increasingly prone to jamming attacks as such

attacks become more sophisticated. In this paper, we seek to gain understanding about a particular type

of jamming attack: the �ow-jamming attack. Toward this end, we provide a mixed-integer programming

model for optimizing the location of jamming devices for �ow-jamming attacks. An accelerated Benders

decomposition approach was used to solve the model. We solved the problem for two realistic networks

and 12 randomly generated networks and found that the Benders approach was computationally faster than

CPLEX for nearly all the problem instances, particularly for larger problems with 1000 binary variables. The

experimental results show that optimally locating jamming devices can increase the impact of �ow-jamming

attacks. Speci�cally, as the number of possible locations increases the jammers' e�cacy increases as well,

but there is a clear point of diminishing returns. Also, adding lower-powered jammers to work in conjunction

with higher powered jammers signi�cantly increases overall e�cacy in spite of the power di�erence.

Keywords: OR in telecommunications; OR in defense; �ow-jamming attacks;jamming device placement

problem; Benders decomposition

1. Introduction

The goal of this paper is to study the jammer placement problem for �ow-jamming attacks. Toward

this end, we develop a mixed-integer programming (MIP) model that maximizes the impact of jamming

by maximizing the fraction of �ows being jammed. We also present an accelerated Bender's decomposition

algorithm and use the model and algorithm to gain insight into this particular jammer placement problem.
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1.1. Motivation

Wireless networks refer to the communication in networks between devices, such as laptops, without the

use of cables or wires. Common types of wireless networks include wireless local area networks (WLANs),

wireless sensor networks (WSNs), and ad hoc networks (AHNs). A WLAN, also known as a Wi-Fi network,

allows for devices to easily connect to the Internet whenever needed as long as the device can connect to

a wi-� signal. Such networks are increasingly ubiquitous, and can be found in schools, homes, and co�ee

shops [1]. A WSN is a collection of a large number of autonomous nodes that gathers information from

the area in which they are deployed and shares information among other nodes or sends the information

to a base station [2]. An AHN is a temporary connection in which devices communicate with one another

directly without the use of a router signal, and are typically used when building a well-established network

infrastructure is not possible such as in a disaster or military situation [3].

Because wireless networks by de�nition rely on air as a medium for data transfer instead of cables or

wires, they are highly susceptible to attacks. With increased dependence on networked information systems,

�nding better ways to secure them is increasingly important. Among the various attacks in wireless networks,

Worm hole attacks [4], Sybil attacks [5], and jamming attacks cause the most security concern [6] because

these attacks are easy to launch. Although not discussed within this paper, there are several other attacks

and defensive strategies in wireless networks [7].

1.2. Related Literature

Wireless jamming attacks, a type of Denial of Service (DoS) attack [8], have been widely researched

[9, 10] and are employed by the military to deny terrorists the ability to transfer data through a network,

as an example. Data sent by a source node travels through di�erent abstract layers before they reach

the destination node [2, 11]. A DoS attack on the physical layer is called a jamming attack [11]. In

jamming attacks, the jamming device transmits radio signals that disrupt communications in the network

by decreasing the Signal-to-Interference-plus-Noise ratio (SINR) [12], which is the ratio of the signal power

to the sum of the interference power from other interfering signals and noise power. A desirable ratio greater

than 1 indicates more signal than noise, and with enough power and by choosing the same frequency as the

network's frequency, coupled with the same type of modulation, the jamming device can override any signal

in the network. Jamming devices transmit radio signals which could, in the presence of legitimate signal,

disrupt communication. There are many types of jammers like, constant jammer, reactive jammer, random

jammer, and deceptive jammer . Constant jammers continously emit radio signals or random sequence of

bits that disrupt legitimate communication. Reactive jammers do not constantly jam and conserve power,

but react to the presence of a legitimate signal and jam it. Random jammers like reactive jammers conserve
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energy by not constantly jamming, and randomly switching between jamming and sleep states. Deceptive

jammers like constant jammers continuously emit radio signals, but unlike constant jammers, decepetive

jammers do not send random bits, but send legitimate bits giving a impression of a legitimate node to the

network. For better understanding jammers and how jamming attacks work, refer to [7] and [13].

As well as the physical layer, Thuente and Acharya [14] and Wood and Stankovic [15] have also studied

jamming attacks on the link layer. Tague et al. [16] introduced a more sophisticated jamming attack that

uses higher layer information to jam the data �owing through the network. They studied the problem of

intelligently assigning jamming devices to the �ow of data in the network and referred to the attack as a

�ow-jamming attack. A single packet travels through multiple wireless links, and an adversary planning to

jam a network has a limit on the amount of power available in the jamming device; hence, the adversary

should choose to jam when minimal energy is required to jam. A smart attacker can disrupt communication

signi�cantly by using higher layer information (e.g., the network layer), less power, and by intelligently

assigning jamming devices to the data �owing in the network.

Among the jamming literature there are a few papers that deal with location problems in jamming attacks.

Wood et al. [17] created a mapping detection approach to provide feedback to the base station about further

jamming areas and power management strategies for the nodes that are under jamming attack or within the

range of the jamming devices. Liu et al. [18] addressed the problem of �nding a jamming device located in

a wireless network by proposing a least-squares-based localization algorithm that estimated the location of

the jamming device by using the changes in neighboring nodes caused by the presence of a jamming device.

Liu et al. [19] proposed a method to �nd the location of multiple jamming devices in a network even when

the jamming areas overlap. Such studies contribute to �nding the location of a jamming device as a defense

strategy. For attacking strategies, determining the optimal number and/or the optimal placement of a set of

jammers is also an area of research, a problem introduced by Commander et al. [20], known as the Wireless

Network Jamming problem. The authors developed an integer programming model for �nding the minimum

number of jamming devices needed to meet a certain jamming threshold. Vadlamani et al. [21] solved a

bi-level min-max jammer placement problem in which an attacker places jamming devices to minimize the

throughput of the network, and the defender's objective is to maximize the throughput of the network by

solving a max �ow problem.

In addition, a number of researchers have studied the network interdiction problem, a problem that is

closely related to the problem of jamming a wireless network. Researchers have studied interdiction problems

for objectives such as minimizing the maximum �ow [22], maximizing the shortest path [23], and minimizing

network connectivity [24, 25]. Building upon this work, researchers have also considered networks with hub-

and-spoke structure [26] and series-parallel networks [27]. Further, extensions have been made to consider
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multiple commodities [28], multiple time periods [29], dynamic two-player interactions [30], and random

interdiction e�ect [31]. Researchers are continuing to study network interdiction problems in a diverse set of

areas such as facility location [32, 33, 34, 35, 36], disease control [37], and cyber security [38].

Tague et al. [16] were the �rst to introduce �ow-jamming attacks in a wireless network and de�ned

various evaluation metrics to measure the impact of such attacks; they assumed jamming device locations

were known and solved a linear programming model to assign jamming devices in order to optimize the

metrics. For �ow-jamming attacks in multichannel wireless networks, Kim et al. [39] proposed stochastic

search algorithms like iterative improvement, simulated annealing, and a genetic algorithm to provide a

stochastic optimization approach. However, both of these papers assumed known locations of jamming

devices in their study.

However, the work in papers Commander et al. [20] and Vadlamani et al. [21] cannot be directly applied

to �ow-jamming attacks because �ow-jamming attacks use higher layer information, such as the network

layer information, when planning how to attack. In addition, although Tague et al. [16] and Kim et al.

[39] study �ow-jamming attacks, they assumed that the locations of the jamming devices are known. In

summary, the jammer location problem has not been studied for �ow-jamming attacks. As a result, there

is currently a lack of understanding about how di�erent jammer placement decision impacts the throughput

loss in �ow-jamming attacks. Thus, there is a need to study the jammer location problem in this context.

1.3. Contributions

In this paper, we discuss the �ow-jamming attack by looking at the problem from the attackers point of

view and study the jammer placement problem. Speci�cally, this paper makes the following contributions:

1. A mixed-integer programming model for analyzing the impact that jamming device locations have on

jamming e�ectiveness,

2. An accelerated Benders decomposition algorithm, and

3. We analyze how the model responds to changes in parameter values; this analysis helps understand

the impacts that changes to parameters have on jamming e�cacy.

The rest of the paper is organized as follows: Section 2 describes the problem at hand and provides a mixed-

integer programming model. Section 3 describes the Benders decomposition algorithm and the di�erent

acceleration techniques used. Section 4 provides the computational results and discussion of the results.

Finally, Section 5 concludes the paper.
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2. Problem Description and Mathematical Model

The main objective of this paper is to develop a mixed integer programming (MIP) model for �ow-

jamming attacks which takes into account the impact of the location of jamming devices on the �ow. A

�ow in a network is a path on which the data or packets are sent from the source to the destination.

The problem is approached from the attacker's point-of-view, and it consists of optimally placing a set of

jamming devices onto a given set of possible locations such that the impact of the attack is maximized. It

is to be noted that since we are studying the problem from an attackers point-of-view, we do not study

the localization of jammer (see [18]) and concentrate only on the optimal jammer placement problem. The

adversary can choose to jam each packet sent by the network when minimal energy is required because a

single packet traverses multiple wireless network links, e�ectively jamming the tra�c �ow. The attacker,

who has multiple jamming devices, aims to use minimal power from the total available power to jam network

�ows over multiple jamming devices and to maximize the amount of disruption. Hence, the e�ciency of the

attack can be optimized by intelligently assigning jamming devices to �ows, which is especially important

when considering the possibility that di�erent jammers have di�erent power levels. This can be thought

of as a battle�eld scenario where military strategists try to jam �ows or packets of information from one

terrorist camp to another. They ideally want to jam all the �ow that is transmitted between the terrorist

camps, but they have limited power levels. So, optimizing the jamming attack to get the maximum bene�t

is the goal of the military strategists. A key assumption in our model is that the path for each �ow is �xed;

that is, the network does not re-route tra�c to avoid jamming. This assumption is appropriate because the

low energy usage of jamming attacks makes them very di�cult for the network operator to detect, in turn

making re-routing di�cult.

Figure 1 is an illustrates the e�ect of optimally locating jamming devices prior to a �ow-jamming attack.

This is not a real problem we solve in this paper, but an example of the importance of jammer placement

problems in �ow-jamming attacks. Figure 1a shows a network with six nodes and two �ows; Flow 1 and

Flow 2. The �ows are not under a jamming attack, and hence, they can each transmit 100% of their data.

However, if the network is hit by a �ow-jamming attack, some of the data may be lost. Suppose that an

attacker launches a �ow-jamming attack and places the devices as shown in Figure 1b. In this case, 40%

of Flow 1 and 30% of Flow 2 is jammed. If the jammer solves an optimization problem to �nd the optimal

location of jamming devices, as shown in Figure 1c, 50% of Flow 1 and 100% of Flow 2 is jammed. Therefore,

it is important for the military to �nd the optimal location of jamming devices with an aim to maximize the

impact of �ow-jamming attacks.
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(a) Network without jamming (b) Flow jamming attack with arbitrary
jamming device locations

(c) Flow jamming attack with optimal jam-
ming device locations

Figure 1: Example of �ow-jamming attacks

In this paper, we model a wireless network as a graph whose nodes represent wireless transmitters and

whose arc represent potential communications between transmitters. The set of nodes is denoted as N . The

data or packet �ows between the source and destination nodes in N is considered to be a set of single path

�ows F . We assume that the location of the nodes and the number of �ows do not change for the duration of

�ow-jamming attacks. It is a common problem in wireless networks that some of the packets or data sent by

some of the nodes collide with concurrent transmission resulting in the loss of packets. As in Tague et al. [16]

we assume that only one �ow is scheduled at any given time, i.e., there will be no concurrent �ows and hence

any loss of packets is due to jamming. In the problem the jammer has a set of jamming devices represented

by the set I; each device has a varying amount of limited power. The set J be the set of locations at which

the jamming devices can be placed. The adversary tries to locate the jamming devices in a way that will

reduce the energy consumption and yet increase the impact of the �ow-jamming attacks. Let cjf be the cost

to jam �ow f by a jamming device at location j. The cost cjf is proportional to the inverse of the squared

distance from location j to the closest non-source node on the �ow f (Tague et al. [16]). If rf is the rate

of �ow in the network, i.e., the rate at which the packets are sent from the source to the destination in the

network and is measured in bits/time, then cjfrf is the total energy required for a jamming device i to jam

every packet in �ow f from location j. All the notations used in this paper are given in Table 1. Since every
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Table 1: List of mathematical notations

Notation Explanation

N Set of wireless network nodes
F Set of network �ows
J Set of locations
I Set of jamming devices

rf Flow rate of �ow f , ∀f ∈ F
cjf Cost to jam �ow f by a jamming device at location j ∀j ∈ J , f ∈ F
pi Jamming resource supply for jamming device i, ∀i ∈ I

jamming device need not jam every packet in the �ow f , we de�ne a decision variable 0 ≤ xijf ≤ 1 as the

fraction of �ow f that jamming device i at location j jams. Finally, when placing a jamming device i at

location j, its available power, pi, aids in determining the optimality of such a choice of placement, and so

yij is a decision variable that is 1 if jamming device i is placed at location j and 0 otherwise.

We develop a mixed integer programming model for �ow-jamming attacks as shown below:

[MIFJ ] max
∑

i

∑
j

∑
f xijf∑

j∈J

∑
f∈F

cjfrfxijf ≤ pi ∀i ∈ I (1)

∑
i∈I

∑
j∈J

xijf ≤ 1 ∀f ∈ F (2)

xijf − yij ≤ 0 ∀i ∈ I, j ∈ J , f ∈ F (3)∑
j∈J

yij ≤ 1 ∀i ∈ I (4)

∑
i∈I

yij ≤ 1 ∀j ∈ J (5)

0 ≤ xijf ≤ 1 ∀i ∈ I,∀j ∈ J , f ∈ F (6)

yij binary ∀i ∈ I,∀j ∈ J (7)

The objective function of [MIFJ ] is to maximize the total fraction of jammed �ows. Constraint (1) is the

power constraint. The total resource or power expenditure on the left hand side should be less than or equal

to the total available power pi for jamming device i. Constraint (2) is the �ow constraint, which ensures that

the amount of �ow jammed by the jamming devices assigned to a �ow f must not exceed the amount of �ow

sent. Constraint (3) ensures that a �ow cannot be jammed by device i at location j unless device i is located
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at location j. Constraint (4) forces each jamming device to be deployed to at most one location. Constraint

(5) forces each location to have at most one jamming device. Constraint (6) enforces non-negativity and

upper bound on the fraction of �ow jammed, and constraint (7) is the binary constraint.

3. Algorithmic Strategy

The structure of [MIFJ ] is such that we can separate the problem into two smaller problems: one with

only binary variables and another with continuous variables. Taking advantage of this problem structure,

we applied a Benders decomposition method (Benders [40]), a well-known decomposition method to solve

mixed integer linear programs. The basic idea behind this method is to decompose the original problem into

an integer master problem and a linear programming subproblem. In this section, we �rst provide a basic

Benders decomposition formulation to solve [MIFJ ]. Then, we present several approaches to speed up the

algorithm.

3.1. Benders Decomposition

The underlying Benders reformulation for model [MIFJ ] is given below:

max [MIFJ-SUB ](x | ŷ) (8)

subject to constraints (1), (2), (3), (4), (5), (6), and (7), where [MIFJ-SUB ] is the Benders decomposition

subproblem. For given values of {yij}i∈I, j∈J variables that satis�ed the integrality constraint (7), the model

reduces to the following primal subproblem involving only the continuous variables {xijf}i∈I, j∈J , f∈F .

[MIFJ-SUB ](ŷ) max
∑

i

∑
j

∑
f xijf (9)

p−1i

∑
j∈J

∑
f∈F

cjfrfxijf ≤ 1 ∀i ∈ I (10)

∑
i∈I

∑
j∈J

xijf ≤ 1 ∀f ∈ F (11)

xijf − ŷij ≤ 0 ∀i ∈ I, j ∈ J , f ∈ F (12)

0 ≤ xijf ≤ 1 ∀i ∈ I,∀j ∈ J , f ∈ F (13)

Let γ = {γi ≥ 0 | i ∈ I}, µ = {µf ≥ 0 | f ∈ F}, δ = {δijf ≥ 0 | i ∈ I, j ∈ J , f ∈ F}, and

π = {πijf ≥ 0 | i ∈ I, j ∈ J , f ∈ F} be the dual variables for the constraints (10), (11), (12), and (13)
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respectively. The dual of the primal subproblem, which we called the dual subproblem [MIFJ-SUB(D)] is

given below:

[MIFJ-SUB(D)] min
∑

i γi +
∑

f µf +
∑

i

∑
j

∑
f ŷijδijf +

∑
i

∑
j

∑
f πijf (14)

p−1i cjfrfγi + µf + δijf + πijf ≥ 1 ∀i ∈ I,∀j ∈ J , f ∈ F (15)

γi, µf , δijf , πijf ≥ 0 (16)

Let ∇ be the polyhedron de�ned by the constraints (15) and (16), and let P∇ be the set of extreme points

in the feasible region of [MIFJ-SUB(D)]. Introducing an extra variable θ, we formulate the underlying

Benders master problem [MIFJ-MP ] as below:

[MIFJ-MP ] max θ (17)∑
j

yij ≤ 1 ∀i ∈ I (18)

∑
i

yij ≤ 1 ∀j ∈ J (19)

θ ≤
∑
i

γi +
∑
f

µf +
∑
i

∑
j

∑
f

yijδijf +
∑
i

∑
j

∑
f

πijf ∀(γ, µ, δ, π) ∈ P∇ (20)

yij binary ∀i ∈ I,∀j ∈ J (21)

Constraint (20) is often referred to as the Benders optimality cut. θ is bound by the objective value of the

dual subproblem [MIFJ-SUB(D)]. We note that the Benders subproblem is always feasible; hence, only

optimality cuts are needed in the Benders master problem. The model [MIFJ-MP ], although equivalent

to the [MIFJ ], had a large number of optimality constraints (20) and exhaustively �nding them was not

e�cient. Instead, we iteratively generated a subset of cuts that were su�cient to identify an optimal solution.

In each iteration, we solved [MIFJ-MP ] by replacing the set P∇ with the subset Pn
∇ ⊆ P∇ of extreme points

available at each iteration n = 0, 1, 2, . . .. By solving the relaxed [MIFJ-MP ] problem with only a subset

of all the constraints, we got an upper bound for the original master problem. The idea behind the standard

Benders decomposition is described below.

The algorithm starts by solving the relaxed master problem [MIFJ-MP ] which provides a valid upper

bound to the original problem. We represent this upper bound as UB. The optimal solution of the relaxed

[MIFJ-MP ], given by [znMP], was used to set up the dual sub problem [MIFJ-SUB(D)]. The value of ŷnij in

each iteration was the optimal solution obtained from the LP relaxation [MIFJ-MP ]. The optimal solution
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of the variables of [MIFJ-SUB(D)], provided the optimality cut for the relaxed master [MIFJ-MP ]. The

optimal objective function value, given by [znD] provided a lower bound (LB) to the original problem at

each iteration. If the gap between the upper bound and lower bound falls below a prede�ned threshold

value, ε, the algorithm terminates; otherwise Pn
∇ was updated by adding an optimality cut constraint (20).

Pseudo-code of the standard Benders decomposition algorithm is shown in Algorithm 1.

Algorithm 1 Standard Benders Decomposition

Initialize, UB =∞, LB = 0, n = 1, ε, P∇ = ∅
while true do

Solve [MIFJ-MP ] for yij and [znMP]
if [znMP] < UB then

UB = [znMP ]
end if
For �xed values ŷij , solve [MIFJ-SUB(D)] to obtain values of (γi, µf , δijf , πijf ) ∈ P∇ and [znD]
Generate extra cuts

if [znD] > LB then
LB = [znD]

end if
if (UB − LB)/UB < ε then

break
else

Pn+1
∇ = Pn

∇ ∪ {(γi, µf , δijf , πijf )}
end if
n = n+ 1

end while

We discuss generating extra cuts in detail in Section 3.2.2

3.2. Accelerating Standard Benders Decomposition

In our initial experimentation, the standard Benders decomposition could not solve the problems in a

reasonable amount of time (results provided in Section 4). Hence, we developed acceleration techniques to

solve the [MIFJ-MP ] problem faster and speed up convergence of Benders decomposition. The following

subsections describe the acceleration techniques developed.

3.2.1. Pareto Optimality Cut

Magnanti and Wong [41] showed that if the dual subproblem [MIFJ-SUB(D)] has multiple optimal

solutions, there could be a number of alternatives for the optimality cut constraint (20). They proved that,

for the purpose of generating stronger cuts, adding cutting planes that are not dominated by other optimality

cuts could improve convergence of the Benders decomposition. We say that a cut generated from an extreme

point (γ1, µ1, δ1, π1) dominates a cut generated from another extreme point (γ2, µ2, δ2, π2) if and only if
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∑
i

γ1i +
∑
f

µ1
f +

∑
i

∑
j

∑
f

yijδ
1
ijf +

∑
i

∑
j

∑
f

π1
ijf ≤ (22)

∑
i

γ2i +
∑
f

µ2
f +

∑
i

∑
j

∑
f

yijδ
2
ijf +

∑
i

∑
j

∑
f

π2
ijf

with a strict inequality for at least one point yij ∈ Y . Using the concept of core points, Magnanti and

Wong [41] formulated a problem that generated Pareto-optimality cuts. A core point is de�ned as a point

in the relative interior of the convex hull of the feasible region, and can be used as a proxy for the optimal

solution. Let Y LP be the polyhedron de�ned by (18), (19), and 0 ≤ yij ≤ 1 ∀i ∈ I,∀j ∈ J . Let y0 be

the candidate core point in the Y LP found by solving the LP relaxation of the [MIFJ-MP ]. Even though

such a LP relaxation solution is not guaranteed to be an e�cient core point, it is often in the neighborhood

of the integer optima (Santoso et al. [42]). Furthermore, after some cuts are added to the master problem,

the LP relaxation solution will typically be in the interior of the convex hull of Y , and hence satisfy the

requirement of being a core point (Santoso et al. [42]). We solve the subproblem shown below to obtain the

Pareto-optimal cuts.

[MIFJ-SUB(PO)] min
∑

i γi +
∑

f µf +
∑

i

∑
j

∑
f y

0
ijδijf +

∑
i

∑
j

∑
f πijf (23)

c−1i cjfrfγi + µf + δijf + πijf ≥ 1 ∀i ∈ I,∀j ∈ J , f ∈ F (24)∑
i γi +

∑
f µf +

∑
i

∑
j

∑
f ŷδijf +

∑
i

∑
j

∑
f πijf = z(γ̂i, µ̂f , δ̂ijf , π̂ijf )(25)

γi, µf , δijf , πijf ≥ 0 (26)

where z(γ̂i, µ̂f , δ̂ijf , π̂ijf ) is the optimal solution of the dual problem. Constraints (24) and (26) enforce the

dual feasible region, and constraint (25) restricts feasible dual solutions to the set of alternative dual optima.

The objective function (23) corresponded to minimizing the value of the cut at y0.

3.2.2. Round-O� Strategies

In this section, we discuss a round-o� strategy applied to the relaxed master problem. Although there are

many varieties of such round-o� strategies (e.g., Thanh et al. [43], Bansal et al. [44]), we used the strategy as

discussed by Costa et al. [45]. The main idea behind this strategy is to use the fractional solution obtained

by solving the linear programming relaxation of the master problem to obtain approximations of the integer

solution. Speci�cally, once a fractional solution is obtained, we sequentially round it o� one variable at a

time to obtain a set of partially-rounded solutions. To implement this within our Benders decomposition
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approach, at each iteration we �rst solve a continuous relaxation of the master problem, obtaining a fractional

solution. Second, we round the fractional variable values one at a time, obtaining a set of partially-rounded

solutions. Finally, for each partially-rounded solution, we input it to the subproblem, solve the subproblem,

and add a new Benders cut to the master problem. This approach allows us to obtain a set of additional

Benders cuts with only the smaller amount of computation time needed to solve a continuous relaxation of

the master problem. Moreover, as stated earlier, the subproblem is feasible for any y solution.

We generate an optimality cut of type (20) for each of the fractional variables generated whose value

was greater than 0.5. The algorithm stops when this criterion was met. Thus, the rounding o� strategy

algorithm is:

Algorithm 2 Rounding o� strategy

while fractional variables generated have a value greater than 0.5 do
(i, j) =argmax {yij ∈ Y |yij < 1}
Set yij = 1
Solve subproblem
Update LB
generate optimality cut (20) and add to master problem

end while

3.2.3. Knapsack Inequality

Initial experimentation showed that, with an available good lower bound from the Benders decomposition

algorithm, adding a knapsack inequality (KI) to the Benders master problem along with the optimality cut

constraint (20) had a signi�cant impact on the solution quality. In this paper, the primal subproblem is a

maximization problem and hence we obtain a lower bound in each iteration. We add the knapsack cut as

shown below to the master problem. A variety of valid inequalities from the knapsack inequality can be

derived by modern commercial solvers such as CPLEX which would speed up convergence of the Benders

algorithm [42]. Let LB be the best known lower bound obtained so far from the Benders algorithm. Since

the Benders decomposition algorithm ensures that LB ≤ θ, we may derive the following knapsack inequality

and add it to the master problem in iteration n+ 1:

LBn −
∑
i

γi −
∑
f

µf −
∑
i

∑
j

∑
f

πijf ≤
∑
i

∑
j

∑
f

yijδijf (27)

3.2.4. Solution Elimination Constraint

Brown et al. [46] introduced the idea of adding solution elimination constraints (SECs) to the master

problem. Brown et al. [47] used SECs to ensure convergence of decomposition algorithms. Similarly, Israeli

and Wood [23] referred to SECs as �supervalid inequalities� and showed that adding these constraints speeds
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up convergence. We add the following SEC to our master problem:

∑
(i,j)|Yn=1

(1− yij) +
∑

(i,j)|Yn=0

yij ≥ 1 (28)

A cut (28) is added for every iteration n. The UB provided by solving the master problem [MIFJ-MP ]

with constraint (28) may not be valid if Yn is optimal, and the bound may even drop below [z∗]. This occurs

only if an optimal solution was at hand, and at this point the validity of the bound was irrelevant. Here [z∗]

is the optimal solution of Algorithm 1 without the extra cuts. If [MIFJ-MP ] is infeasible we set UB = LB.

In this case the master problem [MIFJ-MP ] is infeasible because all the solutions had been eliminated by

SECs, and, thus, the solution Yn obtained must be optimal.

4. Computational Results and Analysis

To test our approaches, we solved the �ow-jamming attack problem on two di�erent cases; the �rst was for

two realistic networks CMU [48], MIT [49], and the second was on one set of randomly generated networks.

The number of nodes was obtained from the realistic network's dataset. Figures 2a and 2b show the topology

of the CMU and MIT networks, respectively. The randomly generated networks were created by uniformly

generating node coordinates in a unit square. The set of �ows F in the network were chosen by selecting pairs

of origins and destinations at random from the network. The origin nodes were selected at random without

replacement. In other words, we had a di�erent origin node for each �ow. In determining the intermediate

nodes for each �ow, the shortest path was found and used as the path for the �ow. The number of �ows in

the network was also prede�ned, but the speci�c �ows were determined using the aforementioned strategy

for both the realistic and the random networks. All the experiments were run using the enhanced L-Shaped

method (see Algorithm 1) implemented in Python 2.7 and run on a desktop computer with an Intel Core i7

2.70 GHz processor and 4.0 GB RAM. The optimization solver used was CPLEX 12.3. Below we describe

each of the cases and provide the results.
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(a) CMU (b) MIT

Figure 2: Network Topology of CMU and MIT

4.1. Experimental Results

Case 1:

In this case, we used the networks CMU and MIT, with 54 and 92 nodes, respectively. We assumed

discrete locations for placing jamming devices. These discrete locations were constructed using 8 × 8 and

10× 10 subgrids overlaid on a unit square, resulting in two levels of granularity. Figure 3 gives an example

of a randomly-generated network with six nodes (1-6), two �ows and 25 possible locations (shown as red

stars) of the jamming devices overlaid on a network.

Figure 3: Example of Jamming Device Locations
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It is apparent from Figure 3 that locations of the nodes and the locations of jamming devices were

di�erent. We had two types of jamming devices T1 and T2: the T1 jamming devices have a �xed power level

of 1 mW, and T2 jamming devices have a �xed power level of 10 mW. The number of �ows was �xed and

the �ows were decided using the strategy discussed above. Table 2 shows 12 di�erent experimental problem

instances for this case for both CMU and MIT.

Case 2:

In this case, we solved a randomly generated 146 node network in a unit square. The links between these

nodes were restricted by a prede�ned communication range. We used 10× 10 possible discrete locations for

the jamming devices, and the number of �ows was 100. The �ows were chosen using the strategy mentioned

before. For each problem instance, 5 random networks were generated, and CPLEX and Benders were run

on each of them to maintain consistency in comparing the two methodologies. However, for each problem

instances 5 random networks were generated; thus, we used a total of 60 random networks.

Table 2: Problem Instances

Instances # Locations T1 T2 # jamming devices # Flows Total Power

Problem 1 64 5 5 10 50 55

Problem 2 64 0 5 5 50 50

Problem 3 64 5 0 5 50 5

Problem 4 64 5 5 10 150 55

Problem 5 64 0 5 5 150 50

Problem 6 64 5 0 5 150 5

Problem 7 100 5 5 10 50 55

Problem 8 100 0 5 5 50 50

Problem 9 100 5 0 5 50 5

Problem 10 100 5 5 10 150 55

Problem 11 100 0 5 5 150 50

Problem 12 100 5 0 5 150 5

4.2. Results and Discussion:

The computational results for the average objective value and average time to run for all three networks

are shown in Figures 4 and 5, respectively. To account for noise associated with randomly generating

networks, we report the average values over 5 trials.
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(a) CMU (b) MIT

(c) Random

Figure 4: Average Computational Time (seconds) for Each of the Three Networks

It is apparent from the results shown in Figure 4 that the Benders decomposition with all the acceleration

techniques was faster than CPLEX for all of the problem instances for the networks with a single outlier,

problem instance 10 in CMU.

From Figure 4, by comparing problem instances 1/7, 2/8, 3/9, 4/10, 5/11, and 6/12, one observation is

that with the increase in the number of locations the computation time also increases for both the CMU and

MIT networks. This analysis corresponded to grouping all the experimental runs where all the parameters

are the same except for the number of potential jamming locations. There were, however, exceptions between

problems 2 and 8 and 3 and 9 in MIT, where the 100 location problem was solved faster than the 64 location

problem. These anomalies could have been attributed to the fact that the source and destination were
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randomly chosen, but otherwise the computation time for CMU on the whole was higher than the MIT

network; however, we did not know for certain the impact of the actual topologies of the networks. Another

point of interest was that increasing the number of �ows did not necessarily increase the computational

time, nor did it necessarily decrease it. Certainly placing both T1 and T2 jammers required more time than

placing either T1 or T2 jammers alone. However, by comparing problem instances 2/3, 5/6, 8/9, and 11/12,

there was no clear indication that placing higher powered jammers took more or less time than lower powered

jammers, which suggested the computational time of our model was independent of jamming power. As for

how the jammer power a�ects jamming impact, we explore this idea more in Section 4.3.

(a) CMU (b) MIT

(c) Random

Figure 5: Average Objective Value for Each of the Three Networks

The computational results for Case 1 shown in Figure 5 shows that as the number of �ows increased the
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total impact of jamming also increased. This is seen by comparing those experiments whose parameters were

the same except the number of �ows; in other words, problem instances 1/4, 2/5, 3/6, 7/10, 8/11, and 9/12.

This was because of the fact that as the number of �ows increases there were more �ows in the network that

could have been jammed. Another observation was that as the number of potential locations for jamming

devices increased, the jamming devices had more options to locate a jamming device, thereby increasing the

jamming impact.

Figure 5 also shows that with an increase in power the average impact of jamming increased. This was

true for both CMU and MIT. So, providing the jamming devices with more power provided a signi�cant

increase in the impact of the jamming attacks. Since each of the problem instances presented were randomly

generated (random topology for the Random network, random source and destination choices for all three

networks) and had di�erent run times, Figure 5 shows that the jamming impact in the �ow-jamming attacks

depended not only the number of locations, number of �ows, number of jamming devices, and amount of

power available, but also possibly on the topology of the network. We explore several of these parameters

further in Section 4.3.

Now, in comparing our Benders algorithm to CPLEX directly, we discuss some observations of the results

shown in Table 3. For each problem and for each of the three graphs, Table 3 shows the number of trials

(out of 5) that CPLEX failed to �nd an optimal solution. We note that the enhanced Benders algorithm

found the optimal solution within the 30 minute time limit in all of the problem instances.

Table 3: Instances where CPLEX does not optimally solve the model

1800 Second Limit Reached Out of Memory Optimality Gap Produced
Problem Instance CMU MIT Random CMU MIT Random CMU MIT Random

1 1 0 0 0 1 0 4 4 0
2 0 0 0 0 0 0 2 4 0
3 0 0 0 0 0 0 0 0 2
4 0 0 4 1 0 0 3 5 0
5 0 0 0 0 0 0 3 2 4
6 0 0 0 0 0 0 0 0 2
7 5 5 2 0 0 0 0 0 0
8 0 0 1 0 0 0 1 3 4
9 0 0 2 0 0 0 2 2 2
10 1 0 5 1 1 0 1 3 0
11 0 0 5 0 0 0 2 3 0
12 0 0 5 0 0 0 1 0 0

The 1800 Second Limit Reached group shows the number of trials during which CPLEX reached the

1800 second time limit, producing a feasible but not optimal solution. This speci�c issue happened most

frequently on the Random network and in all cases happened in problem 7. The second major group shows

how often CPLEX ran out of memory but still produced a feasible solution. The last major group shows
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how often CPLEX could not optimally solve the problem, giving an optimality gap. We include the speci�c

optimality gaps in Figure 6

(a) CMU (b) MIT

(c) Random

Figure 6: Average Optimality Gap over 5 Trials

We remark that over all the instances, for the smaller problems with only 50 �ows, it was unnecessary

to use all our cuts to achieve a speed advantage over CPLEX, and so these were run with only the Pareto

optimal cuts. However, for the larger problems with 150 �ows, we employed all our cuts.

We also include the average number of iterations Benders took for each problem instance; we took the

average over �ve trials because of the random choice of source and destination nodes. We show the results in

Table 4. There was no obvious correlation between the parameter con�gurations and the number of iterations

Benders needed to reach an optimal solution. However, with the exception of one problem instance on the
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Random network, we needed fewer than 100 iterations overall. This result shows that our cuts work well

both in allowing Benders to reach an optimal solution and in accelerating the algorithm since more iterations

required more computational time.

Table 4: Average Number of Iterations for All Three Networks over 5 Trials

Problem Instance CMU MIT Random

1 82.2 91.6 1
2 33.6 23.8 2.8
3 20.4 21.6 36.8
4 53.8 58.8 158.6
5 29.8 27.8 79.4
6 28.6 15 34.4
7 81.4 78.8 15.6
8 40.6 10.6 36
9 31.2 10.2 18.2
10 76.2 83.6 50.8
11 33.3 40.2 42.6
12 25.4 17.2 23

4.3. Sensitivity Analysis

We now explore the impact that the number of jamming locations and additional devices with di�erent

power levels have on jamming e�cacy. One question that this research seeks to answer is how great of an

e�ect does increasing the number of potential locations for jammers have on the jamming impact? More

precisely, is there a point of diminishing return? We provide the results of an experiment where, keeping the

other parameters the same, we began with 10 possible locations for jammers and increased the amount by

5 until we reach 150. The results are shown in Figure 7.
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(a) CMU network (b) MIT network

(c) Random network

Figure 7: The e�ects of number of locations on jamming impact

For the CMU network, there was a clear point of diminishing return at half of our 150 possible locations;

anything larger than 75 did not produce a signi�cant gain in jamming e�cacy. For the random network,

this was true almost immediately as the jammers were readily able to jam nearly all the signal, though we

provide a caveat that the random topology likely provided these results. For the MIT network, there was

no clear contribution to increased jamming e�cacy. These results suggest that a very coarse selection of

suitable jammer locations was all that was necessary to attain a signi�cant impact, and anything �ner was

both insigni�cant and more computationally expensive to determine.

Next, as the T1 devices had a signi�cantly lower power than the T2 devices, we wanted to determine the

signi�cance of using both sets of jammers in place of just the higher powered ones. Of course using both will
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work better than using any one alone, but how much so was the key to our next experiment.

More jammers added to a network clearly increased jamming impact. But in the presence of high

powered jammers, did the attacker need additional high powered jammers, or were additional low powered

jammers able to add a signi�cant e�ect to jamming e�cacy? Our next experiment answered this question

by comparing the T2 jammers' jamming impact to T1 and T2 jammers' impact, where the T1 jammer had

only 10% of the T2 jammer's power. Figure 8 shows the results of this experiment.

(a) CMU network (b) MIT network

(c) Random network

Figure 8: The e�ects of using both T1 and T2 devices over only T2 devices on the number of locations

Even though the weaker jammers only added 10% extra total power, there was nearly a 50% increase in

jamming e�cacy; thus, there was de�nitely an advantage to having the extra jammers as seen in the CMU

and MIT networks. For the random network, however, there was no real signi�cant advantage, but this was
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likely the result of the randomness of the network itself where, from the previous results, nearly all the �ow

was jammed immediately.

Figure 8 also shows that as the number of jamming devices increased, the impact of a �ow-jamming

attack also increased. This was because the adversary had more jamming devices to place, which collectively

increased the impact. Notice also that increasing the power level by switching T1 to T2 or using both T1 and

T2 jammer types increased the impact of jamming on the �ows in the network more than using T1 alone.

With the higher amount of power available, the jamming devices jammed more �ows, thereby increasing the

impact of �ow-jamming attacks.

5. Conclusion

This paper studies the jamming device placement problem for �ow-jamming attacks on wireless networks.

An MIP formulation for the �ow-jamming attacks was developed to determine the optimal jamming device

location in order to maximize the impact of �ow-jamming attacks.

We found that there were instances where CPLEX took longer than the upper time limit of 30 minutes

to solve the problem. To address this issue, we used a standard Benders decomposition algorithm to solve

the problem. Due to the slow convergence of standard Benders decomposition algorithm, acceleration tech-

niques to speed up the convergence are provided. Computational results show that the accelerated Benders

decomposition algorithm can be used to solve realistic instances of large problems in reasonable time, in

fact performing signi�cantly faster than CPLEX for all problem instances except one. Using two realistic

networks, CMU and MIT, and 12 random network instances, computational experiments were conducted to

test the model and draw useful insights.

Observing the experimental results, it is apparent that di�erent parameters, such as the number of

jamming device locations, number of jamming devices, number of �ows, and the amount of power available at

each jamming device, play a very important role in the �ow-jamming attacks. As seen, even a slight increase

in total power through the addition of more jammers can greatly increase the impact of jamming, and while

the number of their possible locations are important, this number does reach a point of diminishing returns.

However, our model's computational time does not necessarily depend on jamming power alone; instead, as

expected, our model is more dependent on the number of jammers when considering computational time.

Finally, we have also shown that as the number of �ows increases, the impact of jamming also increases.

5.1. Future Research

For future research, a detailed study on �nding network topologies that are vulnerable to jamming attacks

should be considered. The MIT and CMU networks used in this study had very speci�c topologies that may
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or may not indicate a particular strategy in attacking or defending the network. Since this paper concentrates

on the attacker's perceptive a mathematical programming model that incorporates the defenders strategies

along with the attacker's strategies should also be developed for the �ow-jamming attacks. The defender's

strategies would minimize the impact of �ow-jamming attacks, and a strategy to achieve this goal could be

re-routing the packets through the network. This problem could be formulated as a bi-level attacker-defender

problem, as done similarly in Vadlamani et al. [21].
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