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a b s t r a c t

While few companies would be willing to sacrifice day-to-day operations to hedge against disruptions,
designing for robustness can yield solutions that perform well before and after failures have occurred.
Through a multi-objective optimization approach this paper provides decision makers the option to
trade-off total weighted distance before and after disruptions in the Facility Location Problem.
Additionally, this approach allows decision makers to understand the impact on the opening of facilities
on total distance and on system robustness (considering the system as the set of located facilities). This
approach differs from previous studies in that hedging against failures is done without having to elicit
facility failure probabilities concurrently without requiring the allocation of additional hardening/
protections resources. The approach is applied to two datasets from the literature.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Uncapacitated Facility Location Problem (UFLP) considers a
set of demand points that need to be serviced from a set of
potential facilities. The objective is to select the best subset of
facilities to open in order to minimize total distance from demand
centers to facilities [1]. Applications of the UFLP include the
placement of warehouses [2] and disaster recovery centers [3],
integrated circuit design [2] and clustering [4].

Because of today's globalized threats, such as deliberate sabo-
tage and terrorist attacks [5], there has been renewed interest in
analyzing the UFLP with a focus on vulnerability reduction.
However, terrorist attacks and sabotage are not the only threat
to facilities. Facilities are also subject to labor disruptions, change
of ownership [6] and failure due to weather. Consider for example
that in December 2012 the White House requested 60.4 billion US$
for response, recovery and mitigation related to Hurricane Sandy
damage in all affected states. These resources included efforts to
repair damages to homes and public infrastructure and to help
affected communities prepare for future storms [7].

To address these previous issues, models have been presented
in which resources are allocated to protect the most critical

facilities, thus minimizing effects of worst-case disruptions [8].
Another study analyzed the Robust Maximum Covering Problem,
where decision makers are able to design robust coverage net-
works. The study formulated the problem as a bilevel mixed
integer program, where the objectives to maximize are the initial
coverage and the coverage after the most critical facilities have
failed [9]. Also, a multi-objective optimization model has been
presented in which facilities are located with the objective to
minimize day-to-day construction and operation costs and also
with the objective of minimizing the expected total distance after
facilities have failed [6]. The aforementioned model allows deci-
sion makers to obtain robust solutions by hedging against failures.

Although few companies would be willing to choose solutions
with location and day-to-day transportation cost (total weighted
distance) much greater than optimal just to hedge against occa-
sional disruptions in their supply network, substantial improve-
ments can often be obtained without large increases in day-to-day
operating costs. By taking reliability into account at design time,
one can find near-optimal solutions to the UFLP that are much
more reliable [6]. However, accounting for facility reliability is a
non-trivial process—impossible without accurate data.

When considering hedging against failures, one of the most
important and timely problems in facility location is the issue of
system resilience [10]. Optimizing system resilience allows distribu-
tion networks to regain operational performance after a disruption
as quickly and efficiently as possible. The techniques presented in
this work aim to advance our knowledge towards solving this
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important issue as it relates to the UFLP. Because the literature is
awash with definitions of resilience in areas outside system
robustness, there have been efforts to develop a unified definition
[11]. In this paper, the definition of system resilience used is the
time dependent ratio of recovery over loss. To evaluate the
resiliency of a system, three measures need to be computed:
(1) value of resilience ( ϕ), (2) cost of the resilience strategy (Cr)
and (3) time to implement the resilience strategy (Tr). The formula
for calculating the value of resilience at time tr based on the
objective function ϕ is [11]

ϕðtrÞ ¼
ϕðtrÞ�ϕðtdÞ
ϕðt0Þ�ϕðtdÞ

ð1Þ

Eq. (1) is obtained from the representation of system resilience as
illustrated in Fig. 1. There are three aspects related to system
resilience: reliability, vulnerability and recoverability. Accordingly,
the system is in its original state at time t0, suffers a disruption at
time te and reaches its worse performance at time td. A resilience
action is taken at time ts and the system reaches its recovery status at
time tf (i.e. “bounces back”). The system performance is evaluated at
time trAðtd; tf Þ. A system can be in one of five states: (1) initial state
(the system is performing as it is supposed to, due to its reliability),
(2) the system can have a partial or full failure (due to its vulner-
ability), (3) the system can be in a disrupted state (while it is waiting
to be repaired), (4) the system can be on recovery mode, trying to re-
gain its original status (due to its resilience) and (5) the system
reaches its final state (recovered). The resilience of the system is
what allows a system to transition from a disrupted state to an
operational state. Resilience might have a cost and time associated.

We claim that most of the papers found in the literature focus on
the reliability aspect. That is, allocating resources to prevent the
system from failing. Our focus is on the vulnerability aspect: under
the assumption of failures, the proposed method is intended to
minimize vulnerability as a means to hasten the recoverability of the
system; our rationale is that by increasing the robustness of the
system, resources can be better allocated to system recovery. It is
important to mention that “system” in this paper is the set of open

facilities. Also, throughout this paper, by failure of a facility we mean a
facility that was selected for opening and it failed afterwards. Once a
facility fails, it can no longer satisfy the demand of the demand centers
assigned to it. Therefore, demand centers need to be re-assigned to
their nearest open and functioning facility.

To illustrate the concept of resilience, consider Fig. 2, which
illustrates how the efforts of the electric company PSE&G gradually
restored power to customers in New Jersey [12]. The graph
illustrates the effect of Sandy on the first day (October 29th
2012, when the disruptive event hit New Jersey) and also the
recoverability effort behavior during ten days of recovery efforts. If
the same electric network were to improve its resilience and the
same storm were to hit again, the number of outages would be
smaller (vulnerability reduction) and/or the restoration time
shorter (recoverability improvement). Note that the diagram in
(Fig. 1(b)) mimics the resilience process of PSE&G when the service
function is the number of customers without power.

To adapt these concepts to the UFLP, we present a method that
allows decision makers to trade-off the number of facilities to open,
the total distance before failure and the total distance after failure.
With our approach, decision makers can understand day-to-day
performance trade-offs to obtain a good performance after occasional
disruptions. Additionally, decision makers can understand the impact
that the opening of additional facilities has on total distance. Our
model is formulated as a bi-level binary program. In the first level we
obtain the total distance without failure. In the second level, we obtain
the worst-case total distance after failures. With these two total
distances, the third and final step seeks to obtain solutions that allow
decision makers to hedge against failures. It is important to note that
this approach differs from previous studies in that hedging against
failures is done without having to elicit facility failure probabilities
concurrently without requiring the allocation of additional hardening/
protections resources. Our list of contributions is the following:

1. A systematic approach to allocate facilities in such a way that in
the event of failures, the total distance remains as minimum.

2. A decision making approach that allows to trade-off total
distance without failures, total distance considering failures
and number of facilities.

3. An approach towards increasing system resilience that does
not depend on probabilities and does not require any extra
protection costs.
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Fig. 1. System resilience diagram. (a) Decreasing values of service function ϕðÞ (e.g.
the number clients processed). (b) Increasing values of service function ϕðÞ (e.g. the
number of defective components).
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Fig. 2. Resilience of the electric company PSE&G in New Jersey during Sandy
storm [12].

I. Hernandez et al. / Reliability Engineering and System Safety 123 (2014) 73–8074



The rest of the paper is organized as follows. Section 2
describes the UFLP and the multi-objective bi-level problem for
selecting robust facilities. Section 3 describes our three step
solution approach that uses meta-heuristics (NSGA-II [13] and
MOPSDA [14]). Section 4 presents our results using two standard
datasets from the literature, the Swain [15] dataset and the London
[16] dataset. Section 5 analyses the solutions and explains the
options available for the Decision Maker through the proposed
approach. Finally, Section 6 presents a summary of the main
contributions of our paper.

2. Problem

2.1. List of key symbols

2.1.1. Sets
D Set of demand centers
F Set of all candidate facilities
G Set of open facilities fiAFjyi ¼ 1g
W Set of open facilities that did not fail fiAGjvi ¼ 0g
P ðWÞ Power set of set W, i.e. all possible subsets of W

2.1.2. Parameters
fi Cost of opening a facility at location i ff i ¼ 1 for all iAFg
cij Cost of assigning demand center j to facility i

2.1.3. Decision variables
yi Binary decision variable that determines if facility i is open

or not
xij Binary decision variable that indicates if location j is

assigned to facility i or not
uij Binary decision variable that indicates if location j is

assigned to facility i after failures have occurred
vi Binary decision variable that indicates if open facility i fails

or not

2.2. Background

In the UFLP there is a set of locations for building a facility,
where the cost of building at location i is fi. There is also a set of
demand centers that require service by a facility and if a demand
center j is assigned to a facility at location i, a cost of cij that is
proportional to the distance from i to j is incurred. The objective is
to determine a set of locations at which to open facilities so as to
minimize the total facility and assignment cost. Each facility can
serve an unlimited amount of demand centers. Each demand
center has a positive demand dj that needs to be shipped to its
assigned location. This problem is NP-hard and its mathematical
formulation is as follows [1]:

minimize
y;x

∑
iAF

f iyiþ ∑
iAF

∑
jAD

djcijxij ð2aÞ

subject to ∑
iA F

xij ¼ 1; for each jAD; ð2bÞ

xijryi; for each jAD; ð2cÞ

xijAf0;1g; for each iAF; jAD; ð2dÞ

yiAf0;1g; for each iAF; ð2eÞ

where the objective function represents the addition of the set up
cost (f iyi) and the assignment cost (djcijxij). The first constraint
ensures that each demand center is assigned to a facility (e.g.
distribution center). The second constraint ensures that demand
centers are assigned only to open facilities. The last two con-
straints describe the binary nature of the decision variables.

2.2.1. Datasets
The main inputs for the FLP are the set of demand points and

the set of candidate facilities. Fig. 3 shows the two main datasets
use in this paper. Each graph shows the coordinates of the demand
centers in the Cartesian plane (the size of each point is propor-
tional to its demand). Additionally, each point is a potential
location for opening a facility. The total distance between a
demand center and an open facility is computed using the
weighted Euclidean distance. Both datasets are used as benchmark
in the location analysis literature [17,8]. Fig. 3(a) Swain dataset,
where the data is drawn from a common base composed of 55
nodes identified by their (x, y) coordinates and their user popula-
tion. The data approximates the distribution of air travelers by
origin or destination for Washington, DC in 1960. Fig. 3(b) London
dataset, which represents the location of gasoline stations and fire
stations and where distances are based upon a road network.

2.3. Formulation of the robust facility location problem

The robust facility location problem is a facility location problem
in which the objective is to seek solutions that perform well when
parts of the system fail. In other words, the objective is to hedge
against uncertainty in the solution itself. Unlike stochastic facility
location models, which seek robustness to changes in demand or
cost, robust models seek robustness to changes in the supply
network itself [6]. As discussed in Section 1, current approaches for
the robust facility location problem have focused on optimizing
protection resources against interdictors or assume that facilities
have a specified probability of failure [18,6]. However, we claim that
because some of the failures have a High Impact and a Low
Probability (HILP), in many instances there is not enough data to
estimate the failure probability of the facilities, rendering the models
with serious estimation gaps. In this section we present our
formulation of the robust facility location problem. The novelty of
our formulation is that: (1) hedging against failures is done without
having to elicit facility failure probabilities, (2) availability of extra
resources for protection is not necessary and (3) a multi-objective
formulation is considered to identify trade-offs among solutions.
Initially, the decision variable x determines the assignment of
demand centers to facilities. However, we assume that some failures
will occur and some demand centers will need to be re-assigned
(because their assigned facility failed). The decision variable u
indicates the post-failure assignment of demand centers to facilities
that did not fail. Because we are initially interested in simultaneously
having solutions that perform well without any failures and that
perform well for all possible failures, our initial mathematical
formulation is as follows:

minimize
y

∑
iA F

yif i ð3aÞ

minimize
x

∑
iA F

∑
jAD

djcijxij; ð3bÞ

minimize
u

∑
kAZ

∑
jAD

djckjukj; for each ZAP ðGÞ ð3cÞ

subject to ukjrxkj; for each kAZ; jAD; for each ZAP ðGÞ ð3dÞ

∑
kAZ

ukj ¼ 1; for each jAD; for each ZAP ðGÞ ð3eÞ
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ukjAf0;1g; for each kAZ; jAD; for each ZAP ðGÞ ð3fÞ

In this formulation the constraints of formulation (2) still apply.
The first objective function minimizes the cost of opening facilities.
The second objective function minimizes the total distance
without failures. The third objective function minimizes the total
distance after failures, for all possible failure cases (e.g. 1, 2,
3 failures). Constraint (3d) ensures that demand centers are re-
assigned to open facilities. Constraint (3e) ensures that demand
centers are re-assigned. Constraint (3f) indicates the binary nature
of the decision variables.

This problem formulation allows decision makers to simulta-
neously trade-off distance before failure, distance after failure and
number of facilities to open. However, this formulation has two
limitations. The first limitation is that the computation of all possible
subsets of facilities (P ðGÞ) is intensive (even for small data sets of
facilities). Therefore, the model might be impractical when a large set
of facilities is considered and multiple failure scenarios are analyzed.
The other limitation is this formulation considers a risk seeking
decision maker: by considering all possible failure cases, there will
be instances where solutions will be based on the failures of the
least critical facilities (in terms of distance). If the decision maker is
risk averse, a reformulation is needed. To clarify, from a risk seeking

perspective, failure of the least critical facilities will yield minimal
solutions with respect to distance after failures (the distance will
increase as little as possible) while risk averse perspective considers
worst-case scenarios (maximal distance after failures will always be
dominated by the minimal distance after failures).

2.4. Reformulation of the robust facility location problem

In this section, we re-formulate the problem from the previous
section and decompose it into 3 subproblems that need to be
sequentially solved. The solution to the first subproblem repre-
sents the day-to-day transportation cost (total distance). The
solution of the second subproblem represents worst-case trans-
portation cost (total distance) after disruptions (solved for each
solution found on the first subproblem). Finally, the solution of the
third subproblem provides trade-offs between distance before
failure and distance after failure (solved for each solution found
on the second subproblem). The rationale for analyzing worst-case
is that we are not making assumptions about the probabilities of
failures nor the resources for protecting or attacking facilities.
Therefore, the distance after failure provided by our approach
represents an upper bound. The other advantage of decomposing
the original problem into three subproblems is that the three
subproblems need not be solved for all possible cases of facilities
to open (e.g. 1, 2, 3 facilities to open). The subdivision allows the
decision maker to explore the cases that are of interest to him/her
and discard other cases if he/she wishes to do so. For example,
instead of solving all three subproblems for all cases, the decision
maker can select a desired number of facilities to open after
analyzing the Pareto set (Pareto front) of the first problem. After-
wards, the focus of the two last problems can be based on a
specified number of facilities. This flexibility is similar to the
reference-point based multi-objective optimization [19,20].

2.4.1. First subproblem
The first subproblem is a bi-objective binary optimization problem

minimize
y

∑
iAF

f iyi ð4aÞ

minimize
x

∑
iAF

∑
jAD

djcijxij; ð4bÞ

where the first objective function minimizes the cost of opening
facilities and the second objective function minimizes the total
distance. This problem is the multi-objective version of the problem
(2a). Transforming the classical facility location objective function into
two objectives, allows decision makers to understand the impact that
one objective has over the other (i.e. how opening more facilities
reduces the total distance). As such, decision makers can select the
appropriate trade-off. Constraints (2b)–(2e) still apply.

2.4.2. Second subproblem
The second subproblem finds the worst-case total distance

after disruptions for each solution found on the first subproblem.
The second sub-problem is multi-objective and binary, its formu-
lation is

minimize
v

∑
mAG

f mvm ð5aÞ

maximize
u

∑
kAW

∑
jAD

djckjukj ð5bÞ

subject to vmZym; for each mAG ð5cÞ

vmAf0;1g; for each mAG; ð5dÞ

ukjrxkj; for each kAW ; jAD ð5eÞ
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Fig. 3. Location datasets used in the experiments section. Each point represents a
demand center and a candidate location for placing a facility. The size of each point
is proportional to its demand. (a) Swain (55 Demand points) and (b) London,
Ontario (150 Demand points).
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∑
kAW

ukj ¼ 1; for each jAD; ð5fÞ

where v is the decision variable concerned with the selection of
the facilities that fail. Objective function (5a) minimizes the
number of facilities that fail. Objective function (5b) maximizes
the distance after failures. Constraints (5d) ensures that v is a
binary decision variable. Constraints (5c) ensures that only open
facilities can fail. Constraints (3d), (3e) and (3f) apply. This second
subproblem formulation seeks to find the worst-case distance by
minimizing the facilities that fail and maximizing the distance
after failures. In other words, the formulation tries to find the most
effective way (by failing facilities) to effect the highest increase in
total distance.

2.4.3. Third subproblem
The third problem that needs to be solved provides the decision

maker with the option of trading off day-to-day performance
(lower bound) versus performance after disruption (upper bound).
The mathematical formulation is

minimize
x

∑
iAF

∑
jAD

djcijxij ð6aÞ

minimize
u

∑
kAW

∑
jAD

djckjukj ð6bÞ

subject to ∑
kAW

∑
jAD

djckjukjo ∑
nAT

∑
jAD

djcnjxnj; ð6cÞ

where T represents an optimal set of facilities of the first sub-problem
(jT j ¼ jGj). Objective (6a) minimizes distance before failure, while
objective (6b) minimizes distance after failure. Constraint (6c) ensures
that the distance before failure of any additional trade-off solution is at
least smaller than the distance after failure of a solution found on the
first subproblem. The objective of this problem formulation is to
obtain more trade-off solutions for each number of facilities to open.
The solutions found can be worse than the existing solutions with
respect to distance before failure, but not with respect to distance after
failures. This subproblem is solved for each solution found on the
second subproblem.

3. Solution approach

In this paper, we propose the use of Multi-Objective Evolu-
tionary Algorithms (MOEAs) to solve the bi-level optimization
problems (4) and (5). We choose MOEAs because they are able to
deal with noncontinuous, non-convex and/or non-linear objec-
tives/constraints, as well as problems whose objective function is
not explicitly known (e.g. the output of Monte Carlo simulation)
[14]. MOEAs are specially useful in combinatorial optimization
problems, where optimal solutions might not be guaranteed and
where the solution space is large [21]. These algorithms obtain
near optimal solutions by efficiently exploring just a fraction of the
entire solution space. MOEAs are based on the process of evolution
where the best traits of a population are identified and used to
generate the next generation or replace the population. Specifi-
cally we use two evolutionary algorithms NSGA-II [13], which
comes implemented in various optimization libraries [22,23] and
MOPSDA [14], due to its simplicity. We use two evolutionary
algorithms in order to enhance our solution, given that the two
algorithms might explore different parts of the solution space. For
the third subproblem we use Ordinal Optimization [24].

Other methods for solving multi-objective optimization problems
include weighted sum method, goal programming, lexicographic
method and bounded objective function among others. However,
each of these alternative methods have their own drawbacks [25].
For example, one of the most common approaches to Multi-objective

optimization is the Weighted Sum Method, which combines all
objective functions into a single utility function that needs to be
optimized

minimize
x

∑
k

i ¼ 0
wif iðxÞ; ð7Þ

wherewi represents the relative importance of the objective function fi
for the decision maker and k represents the number of objective
functions. The drawback of this approach is the selection of the
weights. One possible solution is to assign higher weights to more
important objectives, but if the importance of the objectives is not
known, many different weights need to be tried. However, trying
different weights does not guarantee that the Pareto set will be
explored evenly [25]. Another popular approach is Goal Programming,
in which each objective function has a target value to be achieved and
the total deviation from the targets is minimized

minimize
x

∑
k

i ¼ 0
jf iðxÞ�bij; ð8Þ

where bi is the goal of the ith objective. However, the drawback of this
method is that the bi need to be selected and the method does not
guarantee Pareto Optimal solutions [25].

Our approach has the following three steps (the entire source
code and its documentation is available on the following URL:
https://github.com/ivihernandez/facility-location):

1. Approximate the optimal Pareto set with NSGA-II and with
MOPSDA for problem (4). Merge both Pareto sets into one. We
use a chromosome in order to represent decision variable y,
where position i has the bit yi. The chromosome length is equal
to the number of distribution centers (jFj). Element yi is equal
to 1 if the facility is open and zero otherwise. Each chromo-
some is evaluated with two figures of merit, the first one to
obtain the number of facilities and the second one to obtain its
total distance (Fig. 4).

2. For each of the solutions found in the previous step, we find the
optimal Pareto set according to problem (5) with NSGA-II and
with MOPSDA. Afterwards, we merge both Pareto sets into one.
For this subproblem we use a binary chromosome to represent
decision variable v, where position i has the bit vi. The length of
the chromosome is equal to the number of facilities that were
open in the previous step. Element vi is equal to one if the
facility fails and zero otherwise. For each chromosome, two
figures of merit are obtained. The first one is the number of
facilities that fail, the second one is the total distance after the
re-assignment (Fig. 5). Fig. 5 provides more information than
Fig. 4 because it not only shows total weighted distance without
failure (lower bound, in black), but also distance after worst-case
failure (upper bound, in grey). The Decision Maker can know
trade-off two between two objectives and also know how much
his/her total distance will increase in case of failures.

3. At this stage of the solution approach, each solution has four
objective function values associated with it: (1) number of
facilities, (2) total distance, (3) number of failures and (4) total
distance after failures. All these solutions belong to the final
Pareto set S, where each solution is referred to as si. The third step
uses Ordinal Optimization to solve problem (6) and works as
follows. First, the number of facilities (p) and number of failures
(r) for which the decision maker is interested are selected. The
second step involves finding in the Pareto set S a solution sj whose
objective function values match those of the decision maker. In
the third step we use Monte Carlo simulation to open p facilities
randomly and to also fail r of them. We obtain the total distance
after and before failures. Any solution found whose total distance
after failure is smaller than the total distance after failure of sj is
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added to the final Pareto set S. For each number of facilities to
open there are nowmultiple solutions (Fig. 6). Notice that in Fig. 6
the upper bound of problem (5) is used to filter certain candidate
solutions. Solutions with a small increase in distance after failure,
but with a “large” distance before failure are discarted. By “large”
we mean that their distance without failure is larger than the
corresponding upper bound found in the previous step.

4. Computational results

We performed two experiments, one with the Swain dataset and
another one with the London dataset. All experiments were run in an
Asus Laptop with an Intel Core i7 with 6 GB of RAMmemory. In order
to obtain the solutions we developed our program with Python and
the library ECSPY [22]. Each experiment was run four times in order to
obtain more accurate results. Tables 1 and 2 show the computational
results obtained. For the Swain dataset the population size was 50 and
the number of generations was also 50. For the London dataset the
population size and the number of generations was set at 100.
The column time indicates the average time of four runs (in minutes).

The column proportion indicates which percentage of the solutions
obtained in the final Pareto set corresponds to each algorithm.

For the London dataset, Fig. 7 shows the pareto set of problem
(4), Fig. 8 shows the Pareto set of problem (5) and Fig. 9 shows the
Pareto set of Problem (6).

For the third step, the Monte Carlo simulation is configured to
search for a specific number of facilities and a specific number of
failures. The number of simulations was set to 10 000 and the
computational time was 6.65 min for all the solutions shown of
the Swain dataset and 35 min for all the solutions shown for the
London dataset.

Based on the experiments performed, we concluded that there is
a trade-off between using NSGA-II and MOPSDA. NSGA-II performs
faster, but finds less solutions of the final Pareto set. The increase in
computational time for MOPSDA comes from the fact that the Pareto
set is larger and therefore in order to determine which elements are
non-dominated takes longer. Another reason for using the heuristics
was in order to speed up the computational results.

5. Discussion

The final solutions presented in Figs. 6 and 9 highlight the
trade-offs available for the decision maker. For example, for the
Swain dataset the decision maker can select between two different
options. The first option has a low total distance before failure
(5155.805) but a large total distance after worst-case failure
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Fig. 4. Pareto set of problem (4) for to the Swain dataset. Decision makers can select
the solution that best conforms to their needs by trading-off number of facilities to
open (horizontal axis) versus total weighted distance to travel (vertical axis).
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Fig. 5. Pareto set of problem (5) for the Swain dataset. Top: Considering a one
facility worst-case failure. Bottom: Considering a two facility worst-case failure.
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Fig. 6. Partial Pareto set of problem (6) for the Swain dataset. This figure provides
more information than Fig. 5 because the Decision Maker can now trade-off
between three objectives: number of facilities, distance before failure and distance
after failure.

Table 1
Computational results for the first two subproblems of the Swain experiment.

Algorithm Time (min) Proportion (%)

NSGA-II 2.5 39.53
MO-PSDA 30.3 60.47

Table 2
Computational results for the first two subproblems of the London experiment.

Algorithm Time (min) Proportion (%)

NSGA-II 22.6 44.4
MO-PSDA 494 55.56
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(11 293.271). The total distance increases by 119%. The second
option sacrifices the original total distance with an increase of 6%
(5470.473). However, after failures have occurred this second
option has a total distance of 5773.96—an increase of roughly
12% from the original optimal solution but a 51% decrease from the
original cost after worst-case failure. Surely, a significantly appeal-
ing option for a risk averse decision-maker. For the London
dataset, four trade-off solutions are presented when deploying
19 facilities see Fig. 9). To better understand the different options
available for the decision maker, the trade-off between two or
more competing alternatives is presented from a resilience
perspective. This can be appreciated in Fig. 10. Fig. 10 shows
the distances taken from the Swain dataset when the number of
facilities to open is one (the time component is added for
illustration purposes).

5.1. Review of contributions and how they are met

1. A systematic way to allocate facilities in a robust manner.
Through Sections 2.4 and 3 we have provided a framework
that can be applied in order to allocate facilities in a robust way.
Because the proposed solution approach is based on heuristics
it works with any distance function and can scale with respect
to the number of facilities.

2. A decision making approach that allows a decision maker to
simultaneously trade-off distance before failure, distance after
failure and number of facilities. Section 2.4 presents how the
three objectives can be optimized.

3. An approach towards increasing system resilience. The approach
presented is related to System Resilience, given that having a
set of robust facility locations means that the distance after
failure will be as small as possible, thus minimizing the impact
and possibly facilitating the recovery in terms of cost or/and
time. The relationship between resilience and our framework is
explained in Section 1.

6. Conclusions and future work

We have presented an approach that allows decision makers to
systematically deal with the location of facilities in a robust manner,
thus allowing the transportation network to operate efficiently
before and after failures. To our knowledge, this is the first approach
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Fig. 8. Pareto set of problem (5) for the London dataset. Decision Makers can trade-
off between two conflicting objectives and they can also know by how much their
total distance will increase in case of failures. Top: 19 failures. Bottom: 20 failures.
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Fig. 9. Pareto set of problem (6) for the London dataset considering 46 facilities. For
each number of facilities there are multiple solutions to choose, depending on the
desired trade-off between distance before failure and distance after failure. Four
solutions are obtained when the number of failures to consider is fixed at 19.
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Fig. 10. Illustration of two trade-off solutions available for the Decision Makers. The
solid line represents a solution in which distance before failure is the smallest (but the
distance after failure is the largest). The dashed line represents a solution in which
distance before failure is the largest (but the distance after failure is the smallest).
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Fig. 7. Pareto set of problem (4) for the London dataset. Decision Makers can trade-
off between two competing objectives: number of facilities to open and number of
facilities to open.
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to show from a multi-objective perspective how the transportation
network can be more resilient without using any additional
protection budget or redundancy and without assuming failure
probabilities. Our problem formulation allows decision makers to
simultaneously trade-off total distance before failure, total distance
after failure and number of open facilities. For future work one
priority would be to compare our solution approach based on
heuristics with direct methods in terms of the quality of the
solutions and the computational time needed to obtain them.
Another priority would be to solve the capacitated facility location
problem (where each facility can handle a limited amount of
demand).
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