
A maximal covering location-based model for analyzing the

vulnerability of landscapes to wild�res: Assessing the

worst-case scenario

Eghbal Rashidia,∗, Hugh Medala, Jason Gordonb, Robert Gralab, Morgan Varnerc

aDepartment of Industrial and Systems Engineering, Mississippi State University, Mississippi State,

MS, USA.
bDepartment of Forestry, Mississippi State University, Mississippi State, MS, USA.

cDepartment of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA,

USA.

Abstract

In this research, we study the vulnerability of landscapes to wild�res based on the impact

of the worst-case scenario ignition locations. Using this scenario, we model wild�res that

cause the largest damage to a landscape over a given time horizon. The landscape is

modeled as a grid network, and the spread of wild�re is modeled using the minimum

travel time model. To assess the impact of a wild�re in the worst-case scenario, we

develop a mathematical programming model to optimally locate the ignition points so

that the resulting wild�re results in the maximum damage. We compare the impacts

of the worst-case wild�res (with optimally located ignition points) with the impacts of

wild�res with randomly located ignition points on three landscape test cases clipped out

from three national forests located in the western U.S. Our results indicate that the

worst-case wild�res, on average, have more than twice the impact on landscapes than

wild�res with randomly located ignition points.

Keywords: OR in natural resources; Critical infrastructure; Wild�re management; IP

model; Vulnerability assessment.

1. Introduction

Although natural �res are part of many terrestrial ecosystems [1], uncontrolled wild-

�res can be destructive and can cause loss of human life and property [2]. Destruc-

tive wild�res are a primary concern in places where major cities are located close to

highly �ammable vegetation areas, such as the Western and Southern U.S., Australia,

and Mediterranean Europe [2]. There has been a sharp increase in �re events across the

globe [3], and the destruction caused by wild�res appears to be worsening [4]. From 2002

through 2011, wild�res in the U.S. accounted for $13.7 billion in total economic losses, a
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$6.9 billion increase from the previous decade1 [5]. The deaths of 19 �re�ghters in 2013,

the largest such loss since 1933, were part of a general trend of rising threats to lives as

well as properties [5].

Wild�re risk has increased with human populations reaching further into wildlands.

About 32 percent of housing units including homes, apartments and buildings in the U.S.

and 10 percent of all lands with houses are situated in the wildland-urban interface (WUI;

the zone of transition between natural land and human development) [6], and WUI is

expected to continue to grow [7]. Homes located in the WUI have a high probability of

exposure to wild�re, regardless of vegetation type or potential �re size [8]. Along with

increasing wild�re risk, the costs associated with wild�re management are increasing.

The United States Department of Agriculture (USDA) reported that more than $1.6

billion is spent annually by state forestry agencies on wild�re protection, prevention, and

suppression [8]. To reduce the consequences of catastrophic wild�res, planning e�ective

mitigation programs is essential.

Risk assessment has increasingly become a key input to wild�re prevention and mit-

igation decision making processes [9, 10, 11, 12, 13]. Miller and Ager have reviewed the

recent advances in risk analysis for wild�res management [14]. Determining the vulnera-

bility of a system is an important component of risk assessment, which is employed to help

develop risk mitigation strategies to counter risks [15]. Vulnerability assessment studies

identify weak points in the system, and focus on de�ned threats that could compromise

the system's ability to meet its intended function. To our knowledge, no risk assessment

study has considered the worst-case wild�res, and there has not been any pilot risk as-

sessment for a potential arson-induced wild�re that utilizes coordinated multiple ignition

points. The results of such a study can be used in strategic planning e�orts for risk mit-

igation against a threat, especially when available resources and funds are limited. This

paper aims to �ll this gap by proposing a mathematical programming model to study the

vulnerability of landscapes to wild�res in the worst-case scenario.

Operations Research (OR) specialists have worked with �re managers to develop de-

cision support systems that can help improve �re management; however, there remain

substantial gaps between wild�re managers' needs and the decision support systems used

[16]. Linear programming and mixed integer programming (MIP) have been frequently

used in wild�re management (e.g., [17, 18, 19, 20, 21, 22]). Other approaches such

as heuristics [23, 24, 25, 26, 27], nonlinear programming [28], goal programming [29],

stochastic programming [30, 31, 32], stochastic dynamic programming [33, 34], and ro-

bust optimization [35, 36] also have been used in wild�re management. There have also

been some simulation-optimization applications in wild�re research (e.g. [37]). Inter-

ested readers can �nd some review papers regarding the applications of OR in wild�re

1These values are not adjusted for in�ation.
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management; e.g. [38, 39, 40]. In this research, we develop a mathematical programming

model to evaluate the maximum impact of a wild�re on a landscape. We use the model to

analyze the vulnerability of landscapes to wild�res based on the impact of the worst-case

scenario ignition locations.

Although wild�res can start from anywhere on a landscape, the location and number

of ignition points can be an important factor that impact the resulting wild�re spread.

Using our developed optimization model, we investigate the e�ect of ignition locations on

wild�res and identify the potential ignition locations which result in a wild�re with the

maximum impact on a landscape. To model wild�re's behavior on a landscape, we use

FlamMap [41], a �re behavior mapping and analysis program. We consider wild�res that

contain a single and multiple ignition points, such as wild�res caused by lightning [42].

The proposed model is then used to evaluate the impact of wild�re on three landscape

test problems clipped out of three national forests in the Western U.S.

We believe this to be the �rst study that analyzes the worst-case vulnerability of

landscapes to wild�res with regard to the location of ignition sites. Our ultimate goal

in this paper is to evaluate the impact of the worst-case wild�res and to assess the

vulnerability of landscapes to these wild�res. Identifying the highly vulnerable areas of

landscapes can help wild�re managers in wild�re risk mitigation planning such as fuels

treatment scheduling and �re suppression preparedness planning.

The remainder of the paper is organized as follows: Fire modeling details and the

proposed mathematical model are presented and explained in section 2. In section 3,

the model's functionality is tested on three landscape test problems, and the results are

presented. Finally, section 4 discusses the results and implications of our research.

2. Problem description and model formulation

2.1. Problem description

Our objective is to identify ignition locations of a wild�re that pose the maximum

damage to the landscape. Damage or impact (used interchangeably through this paper)

can be evaluated as the percentage of the landscape burned, or the value lost to �re.

For the latter, the value of vegetation type, e.g. commercial timber, and the value of

wildland-urban interface (WUI), if any, are used. We consider a landscape divided into

a number of raster cells, and use FlamMap to model �re spread characteristics in each

cell. If X is the set of vector x indicating the cell(s) from which a �re originates, and

f(x) is a function representing the corresponding impact of the �re on the landscape,

then the research problem can be de�ned as identifying the ignition points, represented

by vector x, of a �re that has the largest impact on the landscape, or equivalently to �nd

x for which f(x) is the maximum. We formulate the problem as a network optimization

problem and later in section 3 test it on three landscape test cases.

The primary assumptions for the research problem studied in this paper are as follows:
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i. the ignition points of wild�res are randomly distributed across the landscape;

ii. multiple �res can start at any location in the landscape; however, for simplicity, we

assume that the physical interaction of �res is negligible, and therefore �re behavior

and characteristics do not change in presence of another �re;

iii. if multiple �res are ignited, they are all ignited at the same time and burn for the

same duration and under the same �re weather conditions;

iv. the areas outside the boundaries are unburnable;

v. when wild�re reaches the center of a cell, that cell is assumed burned; and

vi. �re spreads in an elliptical shape within each cell.

2.2. Modeling the spread of wild�re

To model the spread of wild�re as a network optimization problem, we represent a

landscape with a raster map divided into grid cells. If we represent the center of each cell

as a node, and connect neighboring cells with directed arcs, then the landscape can be

represented with a directed network (Fig.1). As shown in Fig.1 we use bidirectional arcs

for modeling the spread of �re, implying that �re can burn up and down slopes and with

and into the wind. To model the spread of �re in the landscape, we use the minimum

travel time algorithm (MTT) [43] to analyze a scenario where multiple wild�res start at

the same time across a landscape.

Fig. 1: (a) A landscape modeled as a 10 by 10 raster cells, (b) The directed-network representation of
the landscape used to optimize wild�re spread

We use FlamMap to calculate the Rate of Spread (ROS) along with the major �re

spread direction in each cell. The major �re spread direction in each cell represents the

direction in that cell in which �res spread with the fastest speed. Fires can also spread

along other directions, but at slower speed [44]. We use formulas (1) and (2) to calculate

ROS along other directions.

ROS = b2−c2

b−c×COS(θ)
0 ≤ θ <

π

2
(1)
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ROS = b2−c2

b+c×COS(π−θ)

π

2
≤ θ < π (2)

θ is the angle between major �re spread direction in each cell computed by FlamMap

and the �re spread direction from this cell to the center of adjacent cells. In this formula

b and c are outputs of FlamMap and are standard parameters used to describe the ellipse

of �re spread. For more information we refer the reader to [45].

2.3. Mathematical formulation

The model uses the following notation:

Sets and Indices

d is the expected �re duration (minutes);

C is the set of raster cells in a landscape indexed with r, i and j ;

Ni is the set of raster cells adjacent to cell i ;

Parameters

Fi,j is the distance (meters) from the center of cell i to the center of adjacent cell j ;

Ri,j is the rate of �re spread (meters per minute) from cell i to adjacent cell j

(computed using equations (1) and (2)) ;

ti,j is the �re spread time (minutes) from cell i to adjacent cell j , ti,j =
Fi,j

Ri,j
;

B is the number of ignition points;

Vr is the value of cell r lost to the �re;

Lj,r is the length of the shortest path (or equivalently the minimum travel time) from

cell j to cell r, Lj,r is the sum of �re travel time on all the links of a shortest path

that starts from cell j and ends at cell r;

Hj,r is 1 if Lj,r ≤ d, and 0 otherwise (Hj,r implies whether cell r is reached by a wild�re

that starts at cell j within duration d);

Variables

zj 1 if a wild�re starts at cell j, 0 otherwise;

yr 1 if cell r is reached by a wild�re within duration d, 0 otherwise.

In wild�res, it is not only how much of the landscape that is burned and damaged

that matters, but also monetary losses. Therefore, the objective function of the model

should compute the total damage including a monetary value lost to wild�re. The model

identi�es the optimal locations of ignition points such that the resulting wild�re has the

maximum impact on the landscape. The optimization model is speci�ed as follows:
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[MCWVA] max f =
∑

r∈C Vr × yr (3)

yr ≤
∑

j∈C Hj,r × zj ∀r ∈ C (4)∑
j∈C zj ≤ B (5)

yr ∈ {0, 1} ∀r ∈ C (6)

zj ∈ {0, 1} ∀j ∈ C (7)

This model is based on the maximal covering location problem [46]. We term the

model �maximal covering location-based wild�re vulnerability assessment,� or MCWVA.

The MCWVA �nds the set of �re ignition points that can cover the maximal amount of

landscape value. The coverage of a particular ignition point is the accumulative values of

landscape raster cells that are burned within time d. In this model, the shortest paths,

their lengths (Lj,r), and accordingly Hj,r parameters are pre-computed and then entered

into the model as input parameters.

The objective function (3) maximizes the total loss of values of the cells in the land-

scape exposed due to wild�res. Constraints (4) are the burn constraints, and set the

values of the binary variable yr.The variable yr can only be 1 if a �re is ignited at one

or more ignition points that can reach r. Constraint (5) controls the number of ignition

points. Constraints (6) - (7) restrict the variables to binary values. The model can

consider unburnable cells or treated cells (e.g. cells with fuel breaks) if such data are

available. For example, if cell i is a treated cell then this a�ects the �re spread time

ti,j from cell i to any adjacent cell j. We can increase ti,j by a constant greater than d

so that it lengthens the paths that go through cell i, and, therefore, prohibits wild�res

from spreading through cell i. One can also de�ne the ignition probability for each cell in

the landscape such that for unburnable cells or treated cells, the corresponding ignition

probability is zero. There might be parts of the landscape that have more �re incidences,

so those cells should have higher ignition probabilities. For this reason, historical wild�re

records can be used to estimate the average annual wild�re occurrence rates in each cell

[47].

2.3.1. Model Data

In our model a landscape is modeled as a raster grid, which is represented by a

network (as shown in 1). Before running the MCWVA model, FlamMap must be run

for the landscape in order to compute the major �re spread direction (θ) and b and c

(standard parameters used to describe the ellipse of �re spread). These parameters are

used in equations (1) and (2) to compute the rate of �re spread Ri,j for any potential

ignition point i to any of its adjacent point j in the landscape. Denote Fi,j as the distance

(in meters) from point i to point j. Then the �re spread time from point i to point j can
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Figure 2: The process of modeling �re behavior using FlamMap and the MCWVA model

be calculated using ti,j =
Fi,j

Ri,j
. For each potential ignition point j and an arbitrary point

r in the landscape, we use the minimum travel time algorithm (MTT) [43] to compute

the minimum travel time path from j to r. Let Lj,r be the minimum travel time for the

�re to reach point r from the ignition point j. Now we can say that if Lj,r ≤ d (�re

can travel from j to r within duration d using the path with the minimum travel time),

then cell r can be reached and burned by the �re that is ignited in cell j. That is, if

Lj,r ≤ d, we set the parameter Hj,r equal to 1, otherwise 0. Thus, it is the parameter

Hj,r in MCWVA that are computed by FlamMap (see 2).

In the next section, we use MCWVA to investigate the impact of wild�res with opti-

mally located ignition points. We also compute the average impact of wild�res over all

possible ignition location scenarios. The current model can be extended to compute the

expected loss due to wild�res across a possible �re duration distribution [48], instead of

a �xed �re duration. Given the probability for each �re duration, it can be added to the

objective function.

3. Model demonstration

In this section, we use the MCWVAmodel to assess the impacts of the worst-case wild-

�res on three landscape test problems located in the western U.S., where large wild�res

are common. For these landscapes, we compare two scenarios: the worst-case wild�res

with optimally located ignition points and wild�res with randomly located ignition points.

For the former, we use our MCWVA model to compute the maximum impact of wild�res

based on their ignition locations, and for the latter we compute the average impact of

wild�res with ignition points randomly located across the landscape. For this reason, we

conduct a series of experiments to consider the impact of wild�res on di�erent landscapes,

with di�erent �re durations, and di�erent wind speed scenarios. We also run a series of

experiments to compute the impact of wild�res in presence of WUI in a landscape. These

experiments are discussed in details in the following sections.

We used the LANDFIRE database to obtain landscape �les (LCP) for the landscapes

under study. LANDFIRE data are commonly used in wildland �re simulation modeling,

as they are standardized, and updated regularly to adjust to disturbances such as wild-

�res, fuels treatment, and urban development [11]. Landscape �les (LCP) contain spatial

data themes such as fuel models, elevation, slope, aspect, and canopy characteristics. We
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use these data as inputs of FlamMap to model �re behavior and spread in each cell of

the landscapes. FlamMap inputs these data, along with wind speed, wind direction, and

fuel moisture conditions to compute rate of spread and the major �re spread direction in

each cell. We use the outputs of FlamMap (the rate of spread and the major �re spread

direction in each cell) to model �re spread in the landscapes using minimum travel time

algorithm. The details of the landscape cases are discussed in the following section.

3.1. Landscape test problems

The �rst case is the 6307 km2 Santa Fe National Forest in northern New Mexico. A

prevailing west to east wind with 12 miles per hour (19.31 km per hour) speed is assumed

for this case. The second case is the 3979 km2 Umpqua National Forest at the western

slopes of Cascade Mountains in Oregon. The same wind condition is assumed.

Fig. 3: The approximate locations of the forest landscape cases in the U.S. to model the evaluate of the
worst-case wild�res (retrieved from [49] )

The third case is the 3334 km2 San Bernardino National Forest located in the San

Bernardino Mountains in southern California. For this case a prevailing west to east wind

with 12 miles per hour speed is again assumed (we also study this case under slower and

faster wind speed conditions). Fig. 3 shows the approximate locations of these case study

landscapes.

Although modeling these cases into rasterized networks with high number of cells

makes the model more accurate, as the size of the networks increases, the model becomes

more di�cult to solve [44]. We clip an area of 3 km by 3 km from the �rst and second

landscapes. To test the capability of the model for a larger landscape, we clip an area of

4.2 km by 4.2 km from the third landscape and rasterize them into networks with 25 by

25 (625) square cells, each 120 m by 120 m wide, for the �rst two landscapes, and 35 by

35 (1225) square cells, each 120 m by 120 m wide, for the third landscape. To quantify

�re behavior on these landscapes, we use FlamMap 5.0 to calculate the rate of spread

and �re spread directions.
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Table 1: Initial fuel moisture conditions used in FlamMap to model the worst-case wild�res in the
landscape cases

1 hour fuel moisture 6
10 hour fuel moisture 7
100 hour fuel moisture 8
Herbaceous fuel moisture 60
Live woody fuel moisture 90

We use the same initial fuel moisture conditions for all three landscape test problems

in our study (Table 1 ). FlamMap uses Geographic Information Systems (GIS) data,

landscape characteristics, fuel moisture, and wind conditions and outputs rate of spread

and major �re spread directions, the �re behavior characteristics for each cell which are

used in modeling �re behavior in a landscape.

3.2. Computational results

In this section, we run a set of experiments to �nd the e�ect of the locations of

ignition points on the damage that wild�res can cause. Therefore, we compare two

scenarios: (1) wild�res with random ignition points (�random wild�res�), and (2) wild�res

with optimally located ignition points (�worst-case wild�res�). In worst-case wild�res,

the ignition locations are selected optimally through solving MCWVA model. Fig. 4

shows the �re foot print after 24 hours for a sample random wild�re and the worst-case

wild�re with one ignition point for the Santa Fe landscape. The worst-case wild�re with

an optimally located ignition point has much larger impact on the landscape than the

sample random wild�re (see Fig. 4).

To compare these wild�res, we conduct a series of experiments by which we also test

the e�ect of the number of ignition points, �re duration, and wind speed. In the �rst

set of experiments we assume cells have the same value across all the landscapes. We

compute the impact of wild�res as percentages of landscapes burned. Through these

experiments, we can see the impact of wild�res on di�erent landscapes as well.
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Fig. 4: Fire footprint after 24 hours for the Santa Fe National Forest landscape for (a) a sample random
wild�re with single ignition point, (b) the worst-case wild�re with single ignition point.

In the second set of experiments, we test the e�ect of wind speed on wild�res' impact.

In the last set of experiments, we assume that part of the landscape is occupied by WUI,

and, therefore, not all cells have equal value. In this experiment, we test the impact of

worst-case wild�res in presence of WUI.

To calculate the impact of wild�res with optimally located ignition points, we solve

the MCWVA model for the three landscape cases. We implement the model formulation

using Python 2.7 and solve it with Gurobi 6.0 [50]. All tests are performed on a computer

with Intel Core i5 2520M processor at 2.5 GHz and 8 GB RAM. By solving the model to

optimality, it gives us the optimal location(s) of ignition point(s) for a wild�re with the

maximum damage it can cause.

In all of the following experiments, we compare the two wild�re cases (random wild�res

and worst-case wild�res) for di�erent number of ignition point scenarios, by systematically

increasing the number of ignition points from one to �ve. To calculate the impact of

random wild�res, in which the ignition points are randomly located, we compute the

average impact of wild�res, for all scenarios of ignition locations, for one and two ignition

points. However, for three and more ignition points, computing the average impact of

wild�res requires tremendous computational e�ort. For example, for a three ignition point

scenario, we would need to compute the average impact of wild�res for C625
3 scenarios

(number of 3-combination from a set with 625 elements), which entails more than 40

million scenarios for the �rst two landscapes, and more than 300 million scenarios for the

third landscape (C1225
3 ). Therefore, we use Monte Carlo simulation for 3, 4, and 5 ignition

point scenarios. We take a random sample of 5,000 possible ignition location scenarios,

and after �nding the average and standard deviation of the impact of wild�res for each

case, we build 95% con�dence intervals for comparison. The experiments are described

in the following sections.
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3.2.1. The impact of wild�res on di�erent landscapes

In this section, we run a set of experiments on the three landscape test problems to

investigate the impact of two cases of wild�res, random wild�res, and worst-case wild�res.

We compute the impacts of these wild�res under three �re duration scenarios, 12, 18 and

24 hours. We assume the same rate of spread for �re for all these scenarios, though

in real world, �re spread may vary diurnally. For random wild�res, we compute the

average impact, and the 95% con�dence intervals for 5,000 randomly selected Monte

Carlo samples. We assume that all cells are homogeneous and have equal values (Vr =

1 ∀r ∈ C). Thus, the impacts of wild�res can be presented as the percentages of the

landscape burned. Table 2 shows the percentages of each landscape burned by worst-case

wild�res with X number of ignition points (represented by WCWF(X)), and the average

percentages of landscapes burned by random wild�res with X number of ignition points

(represented by RWF(X)).

Table 2: The percentages of study landscapes burned with the worst-case wild�res with X number of
ignition points (represented by WCWF(X)), and the average percentages of landscapes burned by random
wild�res with X number of ignition points (represented by RWF(X)) for di�erent numbers of ignition
points and under di�erent �re duration scenarios.

Fire

Duration

Landscape

Name
WCWF (1) RWF (1) WCWF (2) RWF (2) WCWF (3) RWF (3) WCWF (4) RWF (4) WCWF (5) RWF (5)

12 hours

Santa Fe 7.84 2.72 14.72 5.28 20.96 8.00 25.92 10.56 30.56 12.96

Umpqua 8.96 2.40 16.64 4.80 22.24 7.20 27.20 9.44 32.16 11.68

San Bernardino 11.84 4.73 20.24 9.31 28.24 13.63 36.00 17.63 42.69 21.47

18 hours

Santa Fe 13.92 5.12 23.84 11.36 33.28 16.48 42.40 21.28 49.44 25.76

Umpqua 17.60 5.28 28.16 10.24 36.48 15.04 44.32 19.36 52.00 23.52

San Bernardino 20.73 10.20 36.33 19.27 49.71 27.27 61.63 34.45 72.90 40.82

24 hours

Santa Fe 21.12 9.92 35.84 18.88 48.32 26.88 59.20 33.92 68.80 40.00

Umpqua 25.60 9.28 38.56 17.44 50.08 24.80 60.64 31.36 69.76 36.80

San Bernardino 31.84 17.06 55.43 30.94 76.49 42.12 87.02 51.51 93.71 59.02

Average 17.72 7.41 29.97 14.20 40.64 20.16 49.37 25.50 56.89 30.23

Because of the limited space in Table 2, we only show the average percentages of

landscapes burned for random wild�re (RWF) cases, and not include the con�dence

intervals (to see the con�dence intervals refer to Table 6 in the Appendix). For the

three landscape cases, the di�erences between the average impacts of random wild�res

(based on the number of ignition points) are statistically signi�cant at 95% signi�cance

level (none of the computed con�dence intervals overlap, see Table 6 in the Appendix).

With the same number of ignition points and under the same �re duration scenario, the

worst-case wild�res and random wild�res have di�erent impacts on landscape cases (the

di�erences are statistically signi�cant at 95% signi�cance level).

For wild�res with the same number of ignition points, the worst-case wild�res cause

more than twice the damage than random wild�res (Table 3).

This di�erence is marked for wild�res with only one ignition point; the WCWF(1)

causes approximately three times on average more damage to the landscapes than RWF(1),

when the wild�re lasts for 12 hours (the average of 2.88, 3.73 and 2.50 is about 3.04, see
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Table 3: The ratios of percentages of landscapes burned with the worst-case wild�res with X number
of ignition points (represented by WCWF(X)), and the average percentages of landscapes burned by
random wild�res with X number of ignition points (represented by RWF(X)) for di�erent numbers of
ignition points and under di�erent �re duration scenarios

Fire

Duration

Landscape

Name
WCWF(1)
RWF(1)

WCWF(2)
RWF(2)

WCWF(3)
RWF(3)

WCWF(4)
RWF(4)

WCWF(5)
RWF(5)

Average

12 hours

Santa Fe 2.88 2.79 2.62 2.45 2.36 2.62

Umpqua 3.73 3.47 3.09 2.88 2.75 3.18

San Bernardino 2.50 2.17 2.07 2.04 1.99 2.16

18 hours

Santa Fe 2.72 2.10 2.02 1.99 1.92 2.15

Umpqua 3.33 2.75 2.43 2.29 2.21 2.60

San Bernardino 2.03 1.89 1.82 1.79 1.79 1.86

24 hours

Santa Fe 2.13 1.90 1.80 1.75 1.72 1.86

Umpqua 2.76 2.21 2.02 1.93 1.90 2.16

San Bernardino 1.87 1.79 1.82 1.69 1.59 1.75

Average 2.66 2.34 2.19 2.09 2.02 2.26

Table 3). When the number of ignition points increases, the di�erence between the two

wild�re cases gradually decreases (Table 3). The worst-case wild�res over random wild-

�res ratio goes from 2.66 for wild�res with one ignition point to 2.02 for wild�res with

�ve ignition points.

Fig. 5: The percentage of the three landscape test problems burned with random wild�res (represented
by RWF) and the worst-case wild�res (represented by WCWF) under di�erent number of ignition points,
and di�erent �re duration scenario.

As the results show, the worst-case wild�res have higher impacts on the landscapes

than random wild�res (Fig. 5). In addition, wild�res have di�erent impacts on di�erent

landscapes. The worst-case wild�res and random wild�res both have higher impact on

the San Bernardino test landscape than the other two test landscapes (Fig. 5). Also,

the di�erence between the impact of the worst-case wild�res and the average impact of

random wild�res is greater for the Umpqua test landscape than the San Bernardino test
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landscape (Table 3). These di�erences are likely due to landscape characteristics which

impact the rate of spread and major �re spread direction. The worst-case wild�res and

random wild�res both cause more damage on landscapes when �res last longer; however,

the worst-case wild�res on average spread faster and cause more damage over shorter

times than random wild�res cause over longer times (Fig. 5). For example, the impact of

the worst-case wild�res over 12 hours and 18 hours are respectively more than the impact

of random wild�res over 18 hours and 24 hours.

3.2.2. The impact of wild�res under di�erent wind speed conditions

In addition to landscape characteristics, wind speed also has a major impact on �re

behavior [51]. In the previous set of experiments, we assumed the same wind speed

conditions for all three landscape test problems. In this section, we test the impact

of wild�res under three di�erent wind speed scenarios. By doing so, we can obtain a

more robust conclusion about the e�ect of ignition locations on the impact of wild�res

on landscapes. For this reason, we run a set of experiments on the San Bernardino test

landscape (the largest test landscape with 35 by 35 cells) to investigate the impact of

wild�res under three di�erent wind speed scenarios: 8, 12 and 16 mph (12.87, 19.31,

25.75 kph respectively). As we discussed before, of the three cases, the San Bernardino

case has the least di�erence between worst-case wild�res and random wild�res (we pick

the weakest case for this experiment). The results show that for higher speed winds,

wild�res cause more damage; the higher the wind speed, the more damage the wild�res

cause (Table 4 and Fig. 6). In this experiment, under di�erent wind speed scenarios, the

worst-case wild�res still have a greater impact on the landscape than random wild�res

(Table 4 and 5; for 95% con�dence intervals for random wild�res see Table 7 in the

appendix).

Table 4: The percentages of the San Bernardino landscape burned with the worst-case wild�res with X
number of ignition points (represented by WCWF(X)), and the average percentages of landscapes burned
by random wild�res with X number of ignition points (represented by RWF(X)) for di�erent numbers of
ignition points and under di�erent �re duration and wind speed scenarios.

Fire

Duration

Wind

(MPH)
WCWF (1) RWF (1) WCWF (2) RWF (2) WCWF (3) RWF (3) WCWF (4) RWF (4) WCWF (5) RWF (5)

12 hours

8 11.67 3.92 20.08 7.67 26.29 11.18 32.00 14.61 37.47 17.88

12 11.84 4.73 20.24 9.31 28.24 13.63 36.00 17.63 42.69 21.47

16 13.06 5.88 23.67 11.51 33.71 16.65 43.18 21.47 50.53 26.04

18 hours

8 20.24 8.33 32.73 15.84 43.27 27.61 53.71 28.73 62.53 34.29

12 20.73 10.20 36.33 19.27 49.71 27.27 61.63 34.45 72.90 40.82

16 21.63 12.57 42.29 23.43 60.82 32.73 74.04 40.90 84.49 47.92

24 hours

8 31.18 13.96 48.24 25.63 62.37 35.43 72.65 43.59 83.67 50.69

12 31.84 17.06 55.43 30.94 76.49 87.02 42.12 51.51 93.71 59.02

16 35.10 20.82 62.61 36.90 84.33 49.39 94.12 59.27 96.65 66.86

Average 21.92 10.83 37.96 20.06 51.69 33.43 56.61 34.68 69.40 40.55

For wild�res with the same number of ignition points, and for the same �re duration

scenario, the worst-case wild�res under low wind speed condition have higher impact on
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the landscape than random wild�res under higher wind speed condition (Fig. 6). For

example, the worst-case wild�res with the 8 mph wind condition have higher impact on

the landscape than random wild�res with the 16 mph wind condition. For wild�res with

one and two ignition points, the impact of worst-case wild�res is on average twice the

impact of random wild�res (Table 5). This di�erence decreases as the number of ignition

points and the �re duration increase.

Table 5: The ratios of percentages of the San Bernardino landscape burned with the worst-case wild�res
with X number of ignition points (represented by WCWF(X)), and the average percentages of landscapes
burned by random wild�res with X number of ignition points (represented by RWF(X)) for di�erent
numbers of ignition points and under di�erent �re duration and wind speed scenarios.

Fire

Duration

Wind

(MPH)
WCWF(1)
RWF(1)

WCWF(2)
RWF(2)

WCWF(3)
RWF(3)

WCWF(4)
RWF(4)

WCWF(5)
RWF(5)

Average

12 hours

8 2.98 2.62 2.35 2.19 2.10 2.45

12 2.50 2.17 2.07 2.04 1.99 2.16

16 2.22 2.06 2.02 2.01 1.94 2.05

18 hours

8 2.43 2.07 1.91 1.87 1.82 2.02

12 2.03 1.89 1.82 1.79 1.79 1.86

16 1.72 1.80 1.86 1.81 1.76 1.79

24 hours

8 2.23 1.88 1.76 1.67 1.65 1.84

12 1.87 1.79 1.82 1.69 1.59 1.75

16 1.69 1.70 1.71 1.59 1.45 1.62

Average 2.19 2.00 1.93 1.85 1.79 1.95

Fig. 6: The percentages of the San Bernardino landscape case burned with: (a) the worst-case wild�res,
and (b) random wild�res; for di�erent number of ignition points when wild�res last for 24 hours.

3.2.3. The impact of wild�res in presence of Wildland-Urban Interface

To investigate the impact of wild�res on landscapes in the presence of WUI, we run

another set of experiments on San Bernardino landscape (the largest landscape with 35

by 35 cells). In this set of experiments, we assume that about ten percent of the landscape

contains intermix WUI. In intermix WUI, as opposed to interface WUI, houses mingle

with wildland fuels [8], allowing the cells containing WUI to be ignitable points. To

address WUI losses due to wild�res, we include the value of each cell in the model. By

doing so, we can also address cases where cells have di�erent values depending on the

vegetation type. In this experiment, WUI locations are distributed arbitrarily through
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the landscape. To set a value for each cell in the corresponding network, we assume a

non-WUI cell has a value of 0.4, the same value that Wei [44] uses for non-commercial

timber forest. As it is di�cult to estimate the damage to a WUI cell, including damage

to human life and property, we follow Wei [44] and use a value of 1.4 for cells containing

WUI (and non-commercial timber). These values are unit-less. However, the RAVAR

[52] resource evaluation method along with the real locations of WUI and vegetation

types can be used to assign a value to each cell. We assume that all wild�res burn for

24 hours. The objective of the mathematical optimization model is to locate the ignition

points of a wild�re that causes the maximum damage. Therefore, we expect the model

to locate the ignition points adjacent to cells with higher values (WUI cells), and thus

the resulting worst-case wild�re causes more damage to WUI cells than random wild�res

causes. Fig. 7(a) shows the value lost due to wild�res that last for 24 hours considering

di�erent numbers of ignition points, and Fig. 7(b) shows the percentage of WUI cells that

are burned by the two types of wild�res, the worst-case wild�res and random wild�res.

As expected, the worst-case wild�res still have higher impact on the landscape and pose

more risk (more than two times on average) to WUI than random wild�res (Fig. 7(b)).

Fig. 7: (a) Value lost (unit-less) for the San Bernardino case with random wild�res (represented by
RWF) and the worst-case wild�res (represented by WCWF) for di�erent ignition point scenarios, (b)
The percentage of WUI burnt in the San Bernardino case with random wild�res and the worst-case
wild�res for di�erent number of ignition point scenarios when �re last for 24 hours.

4. Discussion and conclusions

Wild�res can have serious and long-lasting impacts on ecological, social and economic

systems [12]. It is necessary to identify and understand these impacts, and to develop

cost e�ective mitigation strategies accordingly. In this paper, we studied the vulnerability

of landscapes to wild�re threats considering the impact of �re ignition locations � the

worst-case scenario. We compared the impacts of wild�res with optimally located ignition

points (the worst-case wild�res) with the impacts of wild�res with randomly located igni-

tion points (random wild�res). We used FlamMap to model �re behavior using landscape
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data, wind condition, and fuel moisture data, and developed an optimization model to

�nd the maximum impact of wild�res and their optimal ignition locations. Three land-

scape test cases were used for experimentation and the impacts of various factors such as

the number and location of ignition points, �re durations, and wind speeds were investi-

gated. The proposed model is compact, and yet it can incorporate a variety of features

such as the presence of fuel breaks and unburnable cells, and �re duration distribution.

The major contribution of this work is the development of a compact model for as-

sessing the vulnerability of landscapes to wild�res regarding the location and number of

ignition points � the worst-case scenario. The model is e�cient and fast to solve. It takes

less than a minute on a personal computer to solve the largest problem (San Bernardino

landscape case) to optimality. The model can be used to assess the vulnerability of a

landscape to wild�res under the worst-case consequence scenario. This assessment com-

plements an assessment of the average-case consequence scenario. Thus far, researchers

have focused on the average case and have not studied the worst case.

Our results suggest the worst-case wild�res cause more damage (more than two times

on average) to the landscape test cases than random wild�res for both WUI and non-WUI

landscapes. Although higher wind speed can exacerbate the impact of wild�res [53], our

study shows that even under low wind speed conditions, the worst-case wild�res have

higher impact on landscapes than random wild�res would have under high wind speed

conditions. The worst-case wild�res spread faster and cause more damage in shorter

period of time than random wild�res can cause in longer period of time. Within 12

hours, a worst-case wild�re with one ignition point can cause, on average, three times

more damage to a landscape than a random wild�re with one ignition point.

For arson-induced wild�res, it is not only the location of ignition points that can

be determined, but the number of ignition points is also part of the arsonists' decision

process. Therefore, arson-induced wild�res can have more ignition points (multiple �res)

than natural wild�res, which can make arson-induced wild�res more catastrophic and

more di�cult to suppress than natural wild�res. Our results indicate that the worst-case

wild�res with �ve ignition points are 7 times more costly (in case of area burned) than

random wild�res with one ignition point and 4 times more costly than random wild�res

with two ignition points(Table 2). This di�erence can grow even larger if more ignition

points are chosen in an arson-induced wild�re, which makes arson-induced wild�res even

more catastrophic.

As illustrated in this research, the impact of worst-case wild�res can vary between

di�erent landscapes. This is likely due to di�erences in landscapes and vegetation charac-

teristics that in�uence rate of spread, and major �re spread direction, both of which make

a landscape more vulnerable to arson-induced wild�res. Our model can suggest high pri-

ority areas for wild�re risk mitigation planning, such as fuels treatment scheduling and

�re suppression preparedness planning, to reduce the spread and intensity of potential
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worst-case wild�res and arson-induced wild�res. However, it should be noted that in

reality, it is the land and �re managers who, based on their knowledge and expertise,

make the ultimate decision.

There are several directions that future research extending this paper could take.

First, one could extend this study and model the arson-induced wild�re problem as a

Stackelberg game [54] model in which arsonists consider the possible mitigation response

of �re managers and take the optimal action accordingly to minimize the mitigation e�ect.

Another possible extension is to investigate the impact of arson-induced wild�res while

also taking �re response into account, knowing how many resources and �re-response

crews are available at various points in a landscape. This can be especially helpful in

assessing the risk of arson-induced wild�res when adversaries are aware of �re response

resources and their locations.

In this research we have developed a mathematical programming model to the com-

binatorially complex problem of landscape vulnerability assessments to arson-induced

wild�res (worst-case wild�res). Our hope is that this study can begin to �ll the gap in

the literature, and assist landscape and wild�re managers in developing a �re management

system resilient to potential arson-induced wild�re threats.
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Appendix

Table 6: The 95% con�dence interval for percentages of landscapes burned by by random wild�res with
X number of ignition points (represented by RWF(X)) for di�erent number of ignition points, and �re
duration scenarios

Fire

Duration

Landscape

Name

RWF (1) RWF (2) RWF (3) RWF (4) RWF (5)

LB UB LB UB LB UB LB UB LB UB

12 hours

Santa Fe 2.61 2.83 5.23 5.33 7.94 8.06 10.49 10.63 12.88 13.04

Umpqua 2.26 2.54 4.73 4.87 7.12 7.28 9.35 9.63 11.58 11.78

San Bernardino 4.42 4.66 9.23 9.38 13.54 13.73 17.53 17.74 21.35 21.59

18 hours

Santa Fe 4.90 5.34 11.26 11.46 16.36 16.60 21.15 21.41 25.63 25.89

Umpqua 5.00 5.56 10.11 10.37 14.90 15.18 19.21 19.51 23.36 23.68

San Bernardino 10.02 10.39 19.15 19.38 27.09 27.44 34.26 34.64 40.62 41.02

24 hours

Santa Fe 9.57 10.27 18.72 19.04 26.71 27.05 33.74 34.10 39.81 40.19

Umpqua 8.84 9.72 17.25 17.63 24.60 25.00 31.15 31.57 36.60 37.00

San Bernardino 16.81 17.31 30.79 31.09 41.87 42.38 51.24 51.78 58.75 59.29

Average 7.16 7.63 14.05 14.28 20.01 20.30 25.35 25.66 30.06 30.39

17



Table 7: The 95% con�dence interval for percentages of San Bernardino landscape burned by by random
wild�res with X number of ignition points (represented by RWF(X)) for di�erent number of ignition
points, and under di�erent �re duration and wind speed scenarios.

Fire

Duration

Wind

(MPH)

RWF (1) RWF (2) RWF (3) RWF (4) RWF (5)

LB UB LB UB LB UB LB UB LB UB

12 hours

8 3.77 4.06 7.58 7.76 11.08 11.28 14.50 14.72 17.76 17.99

12 4.42 4.66 9.23 9.38 13.54 13.73 17.53 17.74 21.35 21.59

16 5.75 6.00 11.43 11.59 16.54 16.77 21.34 21.60 25.91 26.18

18 hours

8 8.10 8.55 15.71 15.96 22.44 22.78 28.56 28.91 34.10 34.47

12 10.02 10.39 19.15 19.38 27.09 27.44 34.26 34.64 40.62 41.02

16 12.35 12.79 23.29 23.57 32.52 32.95 40.68 41.12 47.69 48.15

24 hours

8 13.69 14.23 25.49 25.77 35.19 35.66 43.36 43.83 50.45 50.94

12 16.81 17.31 30.79 31.09 41.87 42.38 51.24 51.78 58.75 59.29

16 20.48 21.15 36.90 36.90 49.09 49.68 58.97 59.56 66.57 67.15

Average 10.60 11.02 19.95 20.16 27.71 28.07 34.49 34.88 40.35 40.75

References

[1] K. C. Ryan, E. E. Knapp, J. M. Varner, Prescribed �re in North American forests

and woodlands: history, current practice, and challenges, Frontiers in Ecology and

the Environment 11 (s1) (2013) e15�e24.

[2] J. P. Minas, J. W. Hearne, D. L. Martell, A spatial optimisation model for multi-

period landscape level fuel management to mitigate wild�re impacts, European Jour-

nal of Operational Research 232 (2) (2014) 412�422.

[3] J. P. Minas, J. Hearne, D. Martell, An integrated optimization model for fuel man-

agement and �re suppression preparedness planning, Annals of Operations Research

232 (2) (2013) 201�215.

[4] J. P. Minas, J. W. Hearne, J. W. Handmer, A review of operations research methods

applicable to wild�re management, International Journal of Wildland Fire 21 (3)

(2012) 189�196.

[5] Matt Haldane, Insurers, Government Grapple with Costs of Growth in

Wildland-Urban Interface, Insurance Journal (2013), http://www.insurance-

journal.com/news/national/2013/08/15/301833.htm (accessed date September 16,

2015).

[6] V. C. Radelo�, R. B. Hammer, S. I. Stewart, J. S. Fried, S. S. Holcomb, J. F. Mc-

Keefry, The wildland-urban interface in the United States, Ecological Applications

15 (3) (2005) 799�805.

18



[7] R. B. Hammer, S. I. Stewart, V. C. Radelo�, Demographic trends, the wildland�

urban interface, and wild�re management, Society and Natural Resources 22 (8)

(2009) 777�782.

[8] S. M. Stein, J. Menakis, M. A. Carr, S. J. Comas, S. I. Stewart, H. Cleveland,

L. Bramwell, V. C. Radelo�, Wild�re, wildlands, and people: understanding and

preparing for wild�re in the wildland-urban interface - a Forests on the Edge report,

Gen. Tech. Rep. RMRS-GTR-299. Fort Collins, CO. U.S. Department of Agriculture,

Forest Service, Rocky Mountain Research Station (2013) 36p.

[9] A. A. Ager, N. M. Vaillant, M. A. Finney, H. K. Preisler, Analyzing wild�re exposure

and source�sink relationships on a �re prone forest landscape, Forest Ecology and

Management 267 (2012) 271�283.

[10] J. R. Haas, D. E. Calkin, M. P. Thompson, A national approach for integrating

wild�re simulation modeling into Wildland Urban Interface risk assessments within

the United States, Landscape and Urban Planning 119 (2013) 44�53.

[11] J. R. Haas, D. E. Calkin, M. P. Thompson, Wild�re risk transmission in the Colorado

Front Range, USA, Risk Analysis 35 (2) (2015) 226�240.

[12] J. H. Scott, M. P. Thompson, D. E. Calkin, A wild�re risk assessment framework for

land and resource management. Gen. Tech. Rep. RMRS-GTR-315. U.S. Department

of Agriculture, Forest Service, Rocky Mountain Research Station (2013).

[13] D. E. Calkin, M. P. Thompson, M. A. Finney, K. D. Hyde, A real-time risk as-

sessment tool supporting wildland �re decision making, Journal of Forestry 109 (5)

(2011) 274�280.

[14] C. Miller, A. A. Ager, A review of recent advances in risk analysis for wild�re man-

agement, International Journal of Wildland Fire 22 (1) (2013) 1�14.

[15] B. C. Ezell, Infrastructure Vulnerability Assessment Model (I-VAM), Risk Analysis

27 (3) (2007) 571�583.

[16] D. L. Martell, Forest �re management: current practices and new challenges for

operational researchers, in: Handbook of Operations Research in Natural Resources,

Springer New York, 2007, pp. 489�509.

[17] M. A. Finney, A computational method for optimising fuel treatment locations,

International Journal of Wildland Fire 16 (6) (2008) 702�711.

[18] J. Hof, P. N. Omi, Scheduling removals for fuels management (2003)(p. 367-378),

In: P. N. Omi, L. A. Joyce (technical editors). Fire, fuel treatments, and ecological

19



restoration: Conference proceedings; April 16-18, 2002; Fort Collins, CO. Proceed-

ings RMRS-P-29. Fort Collins, CO: U.S. Department of Agriculture, Forest Service,

Rocky Mountain Research Station 475 p.

[19] A. Higgins, S. Whitten, A. Slijepcevic, L. Fogarty, L. Laredo, An optimisation mod-

elling approach to seasonal resource allocation for planned burning, International

Journal of Wildland Fire 20 (2) (2011) 175�183.

[20] G. W. Armstrong, Sustainability of timber supply considering the risk of wild�re,

Forest Science 50 (5) (2004) 626�639.

[21] G. H. Donovan, D. B. Rideout, An integer programming model to optimize resource

allocation for wild�re containment, Forest Science 49 (2) (2003) 331�335.

[22] M. Dimopoulou, I. Giannikos, Spatial optimization of resources deployment for

forest-�re management, International Transactions in Operational Research 8 (5)

(2001) 523�534.

[23] M. A. Acuna, C. D. Palma, W. Cui, D. L. Martell, A. Weintraub, Integrated spatial

�re and forest management planning, Canadian Journal of Forest Research 40 (12)

(2010) 2370�2383.

[24] P. Bettinger, K. Boston, Y. Kim, J. Zhu, Landscape-level optimization using tabu

search and stand density-related forest management prescriptions, European Journal

of Operational Research 176 (2) (2007) 1265�1282.

[25] Y. Kim, P. Bettinger, M. Finney, Spatial optimization of the pattern of fuel man-

agement activities and subsequent e�ects on simulated wild�res, European Journal

of Operational Research 197 (1) (2009) 253�265.

[26] J. R. González-Olabarria, T. Pukkala, Integrating �re risk considerations in

landscape-level forest planning, Forest Ecology and Management 261 (2) (2011)

278�287.

[27] P. Bettinger, A prototype method for integrating spatially-referenced wild�res into

a tactical forest planning model., Research Journal of Forestry 4 (3) (2010) 158�172.

[28] J. R. González, T. Pukkala, M. Palahí, Optimising the management of pinus

sylvestris l. stand under risk of �re in catalonia (north-east of spain), Annals of

Forest Science 62 (6) (2005) 493�501.

[29] D. E. Calkin, S. S. Hummel, J. K. Agee, Modeling trade-o�s between �re threat

reduction and late-seral forest structure, Canadian Journal of Forest Research 35 (11)

(2005) 2562�2574.

20



[30] X. Hu, L. Ntaimo, Integrated simulation and optimization for wild�re containment,

ACM Transactions on Modelling and Computer Simulation (TOMACS) 19 (4) (2009)

1�29.

[31] L. Ntaimo, J. A. G. Arrubla, C. Stripling, J. Young, T. Spencer, A stochastic pro-

gramming standard response model for wild�re initial attack planning, Canadian

Journal of Forest Research 42 (6) (2012) 987�1001.

[32] J. A. G. Arrubla, L. Ntaimo, C. Stripling, Wild�re initial response planning using

probabilistically constrained stochastic integer programming, International Journal

of Wildland Fire 23 (6) (2014) 825�838.

[33] M. Konoshima, C. Montgomery, H. Albers, J. Arthur, Spatial-Endogenous Fire Risk

and E�cient Fuel Management and Timber Harvest, Land Ecconomics (3) (2008)

449�468.

[34] M. Konoshima, H. Albers, C. Montgomery, J. Arthur, Optimal spatial patterns

of fuel management and timber harvest with �re risk, Canadian Journal of Forest

Research 40 (1) (2010) 95�108.

[35] R. G. Haight, J. S. Fried, Deploying wildland �re suppression resources with a

scenario-based standard response model, INFOR: Information Systems and Oper-

ational Research 45 (1) (2007) 31�39.

[36] D. E. Mercer, R. G. Haight, J. P. Prestemon, Analyzing trade-o�s between fuels

management, suppression, and damages from wild�re, in: The Economics of Forest

Disturbances, Springer, 2008, pp. 247�272.

[37] M. Dimopoulou, I. Giannikos, Towards an integrated framework for forest �re con-

trol, European Journal of Operational Research 152 (2) (2004) 476�486.

[38] P. Bettinger, An overview of methods for incorporating wild�res into forest planning

models, Mathematical and Computational Forestry & Natural-Resource Sciences

2 (1) (2010) 43�52.

[39] D. L. Martell, A review of recent forest and wildland �re management decision

support systems research, Current Forestry Reports 1 (2) (2015) 128�137.

[40] J. P. Minas, J. W. Hearne, J. W. Handmer, A review of operations research methods

applicable to wild�re management, International Journal of Wildland Fire 21 (3)

(2012) 189�196.

[41] M. A. Finney, An overview of FlamMap �re modeling capabilities (2006) (p. 213-220).

In: P. A. Andrews, B. W. Butler (comps.) Fuels Management-How to Measure

21



Success: Conference Proceedings. March 28-30, 2006; Portland, OR. Proceedings

RMRS-P-41. Fort Collins, CO: U.S. Department of Agriculture, Forest Service,

Rocky Mountain Research Station. 809 p.

[42] G. Narayanaraj, M. C. Wimberly, In�uences of forest roads on the spatial patterns

of human-and lightning-caused wild�re ignitions, Applied Geography 32 (2) (2012)

878�888.

[43] M. A. Finney, Fire growth using minimum travel time methods, Canadian Journal

of Forest Research (2002) 1420�1424.

[44] Y. Wei, Optimize landscape fuel treatment locations to create control opportunities

for future �res, Canadian Journal of Forest Research 42 (6) (2012) 1002�1014.

[45] D. G. Green, A. M. Gill, I. R. Noble, Fire shapes and the adequacy of �re-spread

models, Ecological Modelling 20 (1) (1983) 33�45.

[46] R. Church, C. ReVelle, The maximal covering location problem, Papers in Regional

Science 32 (1) (1974) 101�118.

[47] C. Palma, W. Cui, D. Martell, D. Robak, A. Weintraub, Assessing the impact of

stand-level harvests on the �ammability of forest landscapes, International Journal

of Wildland Fire 16 (5) (2007) 584�592.

[48] A. A. Ager, N. M. Vaillant, M. A. Finney, A comparison of landscape fuel treatment

strategies to mitigate wildland �re risk in the urban interface and preserve old forest

structure, Forest Ecology and Management 259 (8) (2010) 1556�1570.

[49] US Forest ServiceInteractive visitor map. http://www.fs.fed.us/ivm (access date Au-

gust 10, 2015).

[50] Gurobi Optimization Inc., Gurobi Optimizer Reference Manual (2015).

URL http://www.gurobi.com

[51] R. R. Linn, P. Cunningham, Numerical simulations of grass �res using a coupled

atmosphere �re model: Basic �re behaviour and dependence on wind speed, Journal

of Geophysical Research: Atmosphere (1984-2012), 110 (D13) (2005).

[52] D. C. Calkin, K. Hyde, Break-even point: suppression cost analyses in Montana

weight resource values as determined by tax records and available GIS data, Wild�re

Magazine 13 (2004) 14�21.

[53] T. Beer, The interaction of wind and �re, Boundary-Layer Meteorology 54 (3) (1991)

287�308.

22



[54] H. Von Stackelberg, The theory of the market economy, Oxford University Press,

1952.

23


