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Abstract

We study the following problem in wireless network security: Which jamming device place-
ment configuration during a jamming attack results in the largest degradation of network
throughput? Although others have studied similar jamming device placement problems, this
paper is the first to include two important aspects: 1) network throughput is the optimization
objective rather than network connectivity and 2) the network is subject to radio wave interfer-
ence. We formulate this problem as a bi-level mixed-integer program, and solve it using a cutting
plane approach that is able to solve networks with up to 81 transmitters. Experiments with
the algorithm also yielded the following insights into wireless network jamming: 1) restricting
the number of hops a message can travel did not significantly change the optimal throughput,
2) increasing the number of channels is the best strategy for designing a network that is robust
against jamming attacks, and 3) increasing the range of the jamming devices is the best strategy

for the attacker.
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1 Introduction

This paper addresses the problem of optimally placing a set of jamming devices within the boundary
of a wireless communication network in order to minimize the throughput of the network during
a jamming attack. This is the first study to include two important aspects of this problem: 1)
throughput as the optimization objective and 2) the network is subject to radio interference. Thus,
we call this problem the jamming device location problem subject to interference (JDLP-I). The goal
of this study is to i) develop an optimization modeling approach that can incorporate these two
previously unstudied aspects, ii) learn more about how to design a network to be robust against a
jamming attack, iii) learn more about what actions a jammer might take to increase the disruption

caused by a jamming attack.

1.1 Background and Motivation

The term wireless network is typically shorthand for wireless communication network and is a catch-

all term for communication networks that require limited or no fixed infrastructure. A wireless



network consists of two or more transmitters, which communicate with each other by sending radio
waves. These networks have long been used in the military, and in the last several decades they
have become ubiquitous in everyday life. Because these networks require little or no infrastructure,
they allow users almost unrestricted mobility. Ad hoc wireless networks (i.e., wireless networks that
are implemented on an ad hoc basis) can be very useful in disaster response situations where much
of the communication infrastructure is disabled.

Unfortunately, the characteristics that make wireless networks useful also make them vulnerable
to attacks. The open-air medium has little physical defense against attacks. Not surprisingly,
wireless network security has been an important issue for a considerable time, at least since World
War 11, and is increasing in prominence.

This two-fold truth—that wireless networks are very useful and inherently vulnerable-requires
that we discover ways to minimize this vulnerability. The first step is to gain deeper understanding
about why wireless networks are vulnerable and the extent of their vulnerability to certain types
of attacks. This increased understanding will aid in the development of tools for designing and
protecting wireless networks.

Responding to this need for understanding, many researchers have studied types of wireless
network attacks and how to stop them. In addition, many have investigated strategic interactions
between wireless network attackers and defenders. However, most of these studies have focused on
single-hop networks, in which data transfer occurs only on a single link (for example, a wireless local
area network (WLAN)). In these single-hop networks, it is usually easy to decide where to place the
jamming devices. Thus, researchers often study strategic interactions between a fixed jamming and
the operator of the network. Modeling the jamming of multi-hop networks is more difficult because
an attacker has additional decisions regarding where where to place jamming devices. Although this
problem has been studied by some, there is still much we do not know. Indeed, several researchers
have highlighted this gap [33, 35].

1.2 Relevant Literature

The literature on the technological aspects of wireless communication security is abundant, and
includes descriptions of jamming attacks [30, 18], anti-jamming strategies such as channel-hopping
[28] and spread spectrum techniques [22], anti-jamming protocols for different network layers [3, 37],
key management [10] and analysis of the effect of jamming on network performance measures [29, 4].
Other literature has examined operational considerations, such as the best method for responding
to a jamming attack [24, 17| and developing efficient methods for determining the location of a
jamming device [36].

While many studies have focused on strategic conflicts between network operators and jammers
[20], and some studies have examined how a jammer would optimally allocate his or her resources
[41], only a few studies have considered the actual placement of jamming devices [29, 8, 7].

However, the placement of devices to disrupt a network is the sine qua mon of the field of

network interdiction. After decades of advances, this field is well-established and we now have a



good understanding of how to interdict networks in order to achieve objectives such as minimizing
the maximum flow [42], maximizing the shortest path [14], and minimizing network connectivity [2].
In addition, interdiction models have also been developed for networks with special structure such
as hub-and-spoke[19] as well as trees and series-parallel networks [40]. Interdiction models have
been applied to a wide variety of applications such as interdicting drug smuggling [42], interdicting
a nuclear weapons project [6], interdicting nuclear smuggling Pan et al. [31], and analyzing the
vulnerability of power grids [38].

Following this early work, researchers have studied variations of the canonical network inter-
diction problem, considering multiple commodities [21], multiple time periods [26], dynamic at-
tacker /defender interactions [23|, and several aspects of randomness such as a random interdiction
effect [9], random network topology [12, 13|, and random adversary characteristics [27, 32].

Indeed, the field of network interdiction has produced a mature set of modeling and algorithmic
tools. However, these models and algorithms are tailored for “wired” networks, such as supply chains
and road networks, and not for wireless networks. Thus, there is a need to extend this literature to
the wireless domain.

Only a few studies lie near the intersection of wireless network jamming and network interdiction;
namely, studies on the placement of jamming devices in order to minimize connectivity |29, 8, 7].
Connectivity is an important metric for wireless networks, especially when a jammer is able to
disconnect the network. However, when the jammer does not have sufficient resources to disconnect
the network, the throughput metric is probably more appropriate. In addition, none of the existing
papers considers radio interference between transmitters. Thus, more work needs to be done on the
problem of placing jamming devices; specifically, work that 1) considers throughput as an objective

and 2) models radio interference between transmitters.

1.3 Contributions

The differences between wired and wireless networks preclude the simple extension of existing net-
work interdiction models and algorithms to the wireless domain. For example, the throughput of
a wired network can be computed in polynomial time, while for a wireless network under radio
interference, this computation is NP-hard [16].

This paper studies the jamming device location problem subject to interference (JDLP-I). The
main goals of research presented in this paper are to 1) develop a tractable approach for solving the
JDLP-I and 2) increase our understanding of what makes jamming attacks more and less successful.

The results reported in this paper make the following contributions. 1) A mixed-integer pro-
gramming (MIP) formulation, branch-and-cut procedure and Benders decomposition procedure for
the JDLP-I; 2) empirical results that give insight into what actions are most effective for designing
a network to be robust against jamming attacks and what actions are most effective for increasing
the throughput reduction due to a jamming attack.

The remainder of this paper is as follows. Section 2 describes the JDLP-I, and Sections 3 and 4.1

describe a MIP formulation along with a branch-and-cut procedure. Section 5 contains the results



of an empirical study that examined 1) the tractability of the branch-and-cut procedure and 2) the
relationship between various model parameters and network throughput during a jamming attack.
These results provide insights into how to design a network that is robust against jamming, and

how to increase the effectiveness of a jamming attack.

2 Problem Description

One way of describing JDLP-I is as a (two-level) Stackelberg game played in a 2-dimensional space.
In this game, the jammer acts first and places omni-directional jamming devices among a candidate
set of locations, £, within the space. The cost of placing a jamming device at a location £ € L is
r¢, and the total cost of placing devices cannot exceed a budget R. Each jamming device has a
transmission range e, beyond which signals from the device are too weak to cause any jamming.
The objective of the jammer is to minimize the throughput of the network under the interference
caused by the jamming devices. The jammer has access to an oracle that can compute the network
throughput for any jamming device placement solution.

After the jammer acts, the network operator (likely a software program) routes and schedules
traffic through a communication network. The network has the three layers. The physical layer
consists of a set of omni-directional transmitting devices, each having a fixed location. Let a device
be represented by a node, 4, and let A/ be the set of all nodes. Each node has an infinite buffer for
storing packets, as assumed in Jain et al. [16]. Let d;; represent the Euclidean distance between
nodes ¢ and j. Each node has a communication range, ¢;, within which it can communicate with
another node, and an interference range, a;, within which its transmissions can interfere with other
signals. Both the communication range and interference range for a node ¢ depend on the technology
and power level of the transmitter located at node i. The communication rate between a pair of
nodes 7 and j is u;;.

The connectivity layer includes the transmission of packets between pairs of nodes. This layer
is represented by a connectivity graph, denoted as G = (N, A), where A is the set of arcs, indexed
by k. The connectivity graph is constructed by adding an arc between a pair of nodes ¢ and j, both
contained in the physical layer if node j is within the communication range of 4, i.e., d;; < ¢;. Thus,
node ¢ can send to node j if arc (4, j) exists in G.

A jamming device disrupts the receipt of all messages sent to or received by nodes within its
jamming range. Thus, an arc (7, j) is jammed by a device placed at location ¢ if dy; < e or dy; <e.

In the absence of radio interference, the connectivity graph would be sufficient for computing
a wireless network’s throughput. However, because radio interference can have a significant effect
on network throughput, wireless networks typically operate according to a communication protocol.
The networks considered in this paper use the 802.11 medium access layer (MAC) protocol with
virtual carrier sensing using the RTS-CTS exchange [16]. Under this protocol, a node i cannot send
or receive at the same time as node j is sending or receiving if node j is within node 4’s interference

range or node ¢ is within j’s interference range. This is because a successful communication between



a sender and receiver requires that the sender receives the link layer acknowledgment message
sent by the receiver. Further, we use the protocol model of interference, rather than the physical
one. Thus, in the model, arcs (i,j) and (p,q) interfere with each other if dyj < ay for (i/j') =
(4,9), (¢,9), (i,p), (p,9), (4,P), (P, 7), (4:9)s (¢, J)-

The objective of the network operator is to maximize the interference- and jamming-affected
throughput between a source node s and a destination node ¢, which is the rate of flow received by
t. The operator routes and schedules flow with complete information about the location and power
of the jamming devices, and has control over all flows in the network.

Thus, the two-level game can be represented as follows. Let x be a vector that indicates which
jamming devices are located, and let X be the set of all feasible jamming location vectors. Further,
let y be a flow in the network, Y (x) be the set of allowable flows given jamming vector x, and let
TH(y) be the network throughput for a given flow. The two-stage game can be formulated as the

following bi-level optimization problem:

i TH
i a )

3 Bi-Level Mixed-Integer Programming Model Formulation

We capture the interference between arcs by modeling a third network layer using a conflict graph,
first proposed by Jain et al. [16]. The conflict graph, denoted as G’, has a node for each arc in the
connectivity graph; thus, a node in G’ is denoted as (7,). An arc exists between nodes (i, j) and
(p,q) in G’ if arcs (i,7) and (p,q) in G interfere with each other.

Because arcs interfere with each other, they can not all transmit data simultaneously. Thus,
the network must schedule data transmission in such a way that arcs alternate between the active
and inactive states in order to maximize throughput while avoiding data packet collisions caused
by arc interference. Jain et al. [16] showed that sets of active arcs will not interfere with each other
if the arcs in each set form an independent set in the conflict graph, G’. It is not difficult to show
that a maximal throughput is achieved by only using mazimal independent sets as active arc sets,
where a maximal independent set is one in which adding a node to the set causes it to no longer
be independent. Let Z represent the set of all maximal independent sets, {1, I2,...,Ix} as well
as the set of their indices {1,2,..., K'}. Further, let Zj be the set of all maximal independent sets
that contain arc k.

Given this notation, the steady-state scheduling and routing of data in the network can be de-
scribed using the following two vectors of variables. First, let w = (wy,)nez be a usage vector, whose
elements define the fraction of time that all of the arcs in independent set I,, are simultaneously
active. Second, let y = (yr)rea be a a vector whose elements gy, represent the average flow on arc k;
these variables represent the average flow because data transmission occurs by alternating between
different active arc sets, meaning that each arc is only active for a fraction of the time. Thus, the

value of y; is constrained by the average capacity of k, which is the product of the capacity of k,



uy, and the total proportion of time that k is active, ZnGZk Wy,

Figure 1 illustrates the difference between a maximum flow in a wired network versus a wireless
one. (All figures in this article were produced using the graph-tool Python package [34].) The
network shown is a 4x4 grid network with a single source (1) and sink (16) and each link having unit
capacity. Figure la shows a maximum flow of 2.0 in the wired network, which has no interference.
Unit flows are is sent on routes 1 =2 -3 -4 —-8—-12—-16and 1 —5—-9 — 13 — 14 — 15 — 16,
represented by the red dashed lines. In this solution, arcs are always active because the network is
not subject to interference.

Figure 1b shows the maximum flow in the wireless network, which is subject to arc inter-
ference (each node has interference range 1.0). Again, the flow is sent on the same two routes.
However, because of interference, three alternating sets of active arcs are used 1/3 of the time:
{(1,5),(3,4),(13,14),(12,16)} (green dotted), {(2,3),(5,9),(8,12),(14,15)} (red dashed), and
{(1,2),(4,8),(9,13),(15,16)} (blue long dashed). Thus, each arc on the two paths is active only
1/3 of the time and the flow is now 2/3.

(a) Wired network = 2 (b) Wireless network = 2/3

Figure 1: Wired vs. wireless network throughput

We now explain the theoretical foundation for the solution in Figure 1.

Definition 1. A n x n unit grid network is a n x n grid network in which each row is one unit
from its neighbor and each column is one unit from its neighbor. Further, the communication and

interference range for each node is 1.

Lemma 1. The average flow of an arc on a path of length two or three in a unit grid network is no

more than u/2 and u/3, respectively.

Proof.



Case 1: path of length 2. Let the path be defined by nodes ¢, j, and k. By the definition of a
unit grid network, dyj = ay for all (¢, 5") in {(4,7), (4,4), (J, k), (k,7)}. Thus, each of the two arcs
interferes with each other and in a maximum flow solution each of the arcs must be in a separate
independent set. Since only one independent set can be active at one time in a maximum flow
solution, the proportion of time that either of the two independent sets is active is 1/2. When
active, each arc can transmit at most u units of flow. Thus, the average flow of any arc is at most
u/2.

Case 2: path of length 3. (Following the same argument as in Case 1.) Let the path be defined
by nodes i, j, k, and ¢. By the definition of a unit grid network, dy; = aj for all (i/,;’) in
{(,7), (4,7),(4,k), (k,7),(k,€),(£,k)}. Thus, each of the three arcs interferes with each other.
Thus, in a maximum flow solution, each of the arcs must be in a separate independent set. Since
only one independent set can be active at one time in a maximum flow solution, the proportion of
time that either of the three independent sets is active is 1/3. When active, each arc can transmit

at most u units of flow. Thus, the average flow of any arc is at most /3. O

Lemma 2. The amount of flow on a path in a unit grid network is at most u/2 if the path has
length 2 and u/3 if it has length of at least 3.

Proof. Consider a path of length two. Since both arcs on the path are part of a path of length two,
their maximum flow is u/2 (Lemma 1) and the maximum flow of the path is at most u/2. Now,
consider a path of length three. By Lemma 1, the maximum flow on any arc in the path is u/3 so
the flow on the path is at most u/3. O

Proposition 1. Consider a n x n unit grid network from a single source located on a corner and
a single sink located on a corner. Let u be the capacity of every arc. The throughput is at most u if
n =2 and at most 2u/3 if n > 2.

Proof. When n = 2, every arc in the network interferes with every other arc. Consequently, only
one arc can transmit at one time. In one optimal solution, each of four arcs is in its own independent
set (another is to use only one path with two arcs and have two independent sets). In this optimal
solution, each arc is active 1/4 of the time, so the the throughput is w.

When n > 2, at most two arcs can send from from the sink since it is a corner node. Since n > 2,
each of these arcs must be part of a path of length 3. Consequently, these arcs have an average flow
of at most u/3 (Lemma 2). Thus, the throughput is constrained by the sum of the upper limits on
the two arcs, which is 2u/3. O

Remark 1. A well-known property of the maximum flow problem is that if the arc capacities are
integer, then an integral maximum flow solution exists [1]. In a n x n unit grid network with n > 2,
this is only true if the arc capacities u are a multiple of 3. (To show this, notice that the proof of
Proposition 1 shows that the links coming out of the source node each have an average flow of at
most u/3.)



3.1 Bi-level Formulation

Let x = (z¢)ger be a vector of binary variables, with xy = 1 if a jamming device is placed at location
¢ and 0 otherwise. Further, let y, be the throughput of the network, i.e., rate of flow into the sink

t. The bi-level mixed-integer formulation is as follows.

minxe{o,l}\ﬁ‘ g(x) (1a)
s.t. ngxg <R, (1b)
lel
where
g(x) = max y, (1c)
Ya 1=35
St Uk Y. =30  ieN\{st} VieN lai (1d)
kEFS (1) keRS(1) .
Yo =1
0<yr < [ > wn|w, VheA [B, (le)
nel
dwa <1 ], (1f)
nel
wy, >0 VYnel (1g)
0 <y Suk(l—xg), VkeA,éeﬁk. <1h)

The inner problem, g(x), computes the network throughput given a jamming placement solution.
(Jain et al. [16] showed that the maximum flow problem, augmented with independent set usage
variables (w,) to account for interference, can be used to compute the throughput of a network
subject to interference.) The outer level objective (1la) is to minimize the network throughput by
strategically placing jamming devices. The inner level objective (1c) is to maximize the throughput.
Constraints (1d) balance flow at each intermediate node and require that the source sends flow equal
to the network throughput, while the sink receives flow equal to the network throughput. Constraints
(le) constrain the average flow of each arc to be non-negative and no more than the proportion of
time the arc is active multiplied by the arc’s capacity. Constraints (1f) and (1g) require the usage
vector to be a probability. Finally, letting £i be the set of locations within jamming range of arc k,
the last constraint (1h) sets the capacity of a jammed arc to zero. (The dual variables for selected

constraints are denoted by the variables in brackets.)



3.2 Cormican reformulation

A standard method of solving formulation (1) is to fix the outer problem variables (x), take the
dual of the inner maximization problem, and then unfix the outer problem variables and solve
the resulting minimization problem using well-known methods for solving mixed-integer programs.
However, a well-known drawback of formulation (1) is that taking the dual of the inner maximization
problem leads to a resulting minimization problem with bi-linear terms due to constraint (1h). Thus,
Cormican et al. [9] reformulated the inner maximization problem by penalizing flow on jammed
arcs and eliminating the constraint (1h), resulting in a reformulation equivalent to (1). Their

reformulated inner problem is as follows:

9(x) = maxy>0 Yo — Z Z oYk (2a)

keALELy
st. (1d)-(1g).

Now we take the dual of the inner maximization problem and obtain the following minimization

problem.

minxGX,a,B,v Y (3&)
s.t. ai—aj—k,Bk—i— Zajgzo \V/(Z,j) =keA, (3b)
LeLy,
ar — o > 1, (3c)
Y= uBy Vnel, (3d)
kely
«; unrestricted Vi € N, (3e)
B >0 Vke€ A, (3f)

where X = {xy : £ € L,xp € {0,1},>,c mexe < R} is the set of feasible jamming location solutions.

Remark 2. For the maximum flow network interdiction problem (a special case of our problem in
which there is no interference), the integrality property of the maximum flow problem is used to
show that an optimal solution exists in which a; € {0,1} for all ¢ € N and S € {0,1} for all
k € A. However, this is not always the case for formulation (3), as shown in the following example.
This is not surprising because the underlying maximum flow variation does not have the integrality

property in all cases (see Remark 1).

Example 1. Consider the 3x3 unit grid network shown in Figure 2. The jamming range is set
to 0.0. With one jamming device allowed to be placed (i.e., rp = 1, R = 1), the throughput with

formulation 3 is 0.4. However, when the «; are restricted to be integral, the throughput is 1.0.
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Figure 2: Network for Example 1

An immediate drawback of formulation (3) is the exponential number of constraints (3d), which

we will address in Section 4.1.

3.3 Straightforward Extensions

Following the work of Jain et al. [16], who provided extensions for their network throughput model,

there are several straightforward extensions of the JDLP-I:

3.3.1 Multiple Communication Pairs

Rather than having a single source and sink, the model is easily extended for multiple sources
and sinks. Let M be a set of source-sink pairs {(s1,t1),(s2,%2),...,(sa,tar)} and the set of their
indices be {1,2,..., M}. Each pair has a desired communication flow rate between source and sink,
D,,, i.e., the sinks are not greedy [16]. Replace the flow variables y; with yg,,, which denotes the
flow from s,, to t,, on arc & and modify the objective function and the constraints involving y

accordingly. Further, the following demand constraint must be added to formulation (1):
Z Ykm < Dy Ym e M [en].
ke A

3.3.2 Latency Constraints

To prevent excess latency, one might wish to limit the length of a flow path. Let P be the set of
all s — t paths with a length less than a defined value. The following path-based formulation can
be used to compute the network throughput given a jamming solution x and a constraint on path

length.

10



g(x) = max Z Yp — Z TeYp (4a)

peP teL,
st. 0< Z yp < Z wy | ug, Vk €A, (4b)
PEPy neLy
(1f)-(1g) (4c)
Yy >0 VYpeP. (4d)

Thus, the single-level formulation is

Milyex g~ Y (5a)
s.t. Z ,Bk; + Z Ty 2 1a [yp] vp € Pa (5b)
keAp lely
(3d)—(31).

Path length can be constrained by defining the set P to only contain paths less than a certain

length.

3.3.3 Multiple Channels

To include multiple communication channels, one only needs to include multiple arcs between every
pair of nodes in the connectivity graph. Arcs that are of the same channel do not interfere with

each other.

3.3.4 Other

Jain et al. [16] also mention several other extensions to their model for the maximum flow problem
subject to interference, which we did not attempt to extend to the jamming case. These include
multiple radios per node, directional antennas, multirate radios, other models of interference, and
equity-based objective functions. We believe that making these extensions to our model would not
be difficult.

4 Solution Methodology

We investigated two methods for solving formulation (3): branch-and-cut and Benders decomposi-

tion.

11



4.1 Branch-and-Cut

We account for the large number of usage variables in formulation (3), by using a cutting plane
approach that generates them dynamically. Let Z be a subset of Z. The restricted version of

formulation (3) is then the following:

mianX,a,ﬁ,"/ v (68‘)
st (3b),(30).(36),(30), (6h)
v 2> Z upfBr  Vn € T. (GC)

kel,

Rather than solving formulation (3) in its entirety, we solve formulation (6) and add additional
independent sets to Z in an as-needed fashion, i.e., via a cutting-plane approach. Using this ap-
proach, we seek to iteratively construct a set Z in a way that meets the following criteria: 1) the size
of Z is much smaller than the size of Z and 2) 2*(Z) = 2*(Z), where z*(Z) is the optimal objective
value obtained when the model is limited to the set of maximal independent sets Z. Using this
construction, we may avoid much of the computation time needed to compute z*(Z) by solving a
sequence of much smaller problems, i.e., z*(Z;), 2*(Z2), . . ., z*(Z_fK/), where Z; C Iy C fK/ and K'
is the number of iterations needed for the cutting plane algorithm to return an optimal solution.

However, to generate new constraints of type (6¢), which corresponds to generating new inde-
pendent sets, we solve a separation problem that seeks to find an independent set whose addition
to Z causes constraints (6¢) to be maximally violated given the current fixed values of v and 3. Let
N(G’) be the set of nodes in the conflict graph. Let A(G’) be the set of arcs in the conflict graph.

The separation problem is as follows:

z(B) = max Z By (7a)
keN(G)

st. v t+ur <1 V(k‘, k?l) S A(G/), (7b)

v €{0,1} Vk € N(G). (7c)

The objective (7a) seeks to maximize the righthand side of constraints (6¢). Constraints (7b)
require the set defined by the vy variables to be an independent set (see Section 3).

We embed the cutting plane procedure inside a branch-and-bound algorithm (B&B). That is,
branch-and-bound is applied to the restricted master problem (6). Whenever B&B identifies a new
incumbent solution, we execute a separation procedure to potentially add a new cutting plane. Let
4 and B be the incumbent values of ~v and 3, respectively, at the point in which a new incumbent

solution is found for x. The separation procedure is as follows:

1. Solve the separation problem (7) given B, returning optimal solution v*.

12



2. IE9 <3 kenien up,Byv;, then append the independent set {k : k € N'(G'), vi = 1} to Z.

4.2 Accelerated Benders Decomposition
4.2.1 Benders Decomposition

The standard Benders decomposition approach begins with reformulating the single-level formula-

tion (3) as the following two-level formulation:

mingex g(x) (8)
where

g(x) = ming<g<inzo Y (9a)
s.t. Q=i+ Bt Y d >0 V(ij)=keA [yl (9b)

leLly,
ar—as > 1, [yd (9¢)
v — Z upfr >0 YneZ, |wy] (9d)

kel
o; unrestricted Vi € N,
Br >0 VkeA (9e)
The Benders master problem is then

min@ZO,xeX 0 (10&)
s.t. 92%—2 Zy%xz Ve=1,...,1, (10Db)

ke AleLly,

where I is the number of extreme point solutions to the dual of (9). Constraints (10b) define
supporting hyperplanes of the function g(x) and are known as Benders optimality cuts. Because the
cardinality of I is usually very large, the Bender’s decomposition algorithm dynamically generates
these optimality cuts, computing them using the Benders subproblem, which is the dual of (9). An
advantage of using Benders decomposition to solve bi-level min-max problems such as (8) is that
the Benders subproblem is precisely the follower’s maximum flow problem (2).

However, solving the follower’s maximum flow problem (2) is challenging because of the large
number of w variables, each corresponding to independent sets. Thus, we employ a simple column

generation procedure. The column generation master problem is the following linear program

13



g(x) maxy>o Yo — 3. > TeUk (11a)

keAleLly,
s.t. (1d),
0<ye <[ Y wn|we, VE€A [B], (11b)
nEi—k
dwa <1 [l (11c)
nef
w, >0 Vn€el, (11d)

where Z is the restricted set of maximum weight independent sets. We generate new columns (i.e.,
maximum weight independent sets), by using the maximum weight independent set problem (7) as

a pricing problem. Algorithm 1 describes the column generation procedure.

Algorithm 1 Column generation procedure for throughput problem.
1: function COMPUTETHROUGHPUTCOLUMNGENERATION(X)
2 initialize. Set v* = 0 and z(8") = cc.
3 while v* < z(8)* do
4: Solve the master problem (11), returning, g(x)*, y*, 8%, and v*.
5
6
7

Solve the pricing problem (7), returning z(3*) and independent set I*.
if v* < z(8)* then add new w variable corresponding to I* to master problem.

return The optimal flow y* and throughput g(x)*.

The Benders decomposition procedure starts with an initial value of x and a lower bound on
f and then iteratively adds new Benders optimality cuts via the Benders subproblem. Thus, after
iteration I the Benders master problem has exactly I optimality cuts. (Note that the Benders
subproblem has relatively complete recourse, which means that for all x € X there exists a feasible
solution to the Benders subproblem; thus, Benders feasibility cuts are not needed.) Algorithm 2

defines the Benders decomposition algorithm.

Algorithm 2 Benders decomposition procedure.
1: function BENDERSDECOMPOSITION

2 initialize. Set x < 0, [b < 0 and ub + oc.

3 while /b < ub do

4: Solve the master problem 10, returning 6* and x*.
5: Set 1b + 6*.
6

7

8

9

Solve subproblem (2), returning optimal flow y* and throughput g(x*).
Add Benders optimality cut 0 > y> — >, - 4 Zéeﬁk Y72 to the Benders master problem.
if g(x*) < ub then set ub + g(x*) and x < x*.

return The optimal locations x and throughput ub.
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5 Computational Results

In this section, we use our optimization model to provide insight into several questions.

1. Will constraining the number of hops allowed on a path decrease the optimal throughput? In
some wireless networking applications, packet latency is a concern. Thus, some benefit could

be gained in ensuring low latency by constraining the number of hops on a path.
2. How long does it take to solve the model and what size instances can be solved?

3. What strategies for designing a network to be jamming-resistant are most beneficial? We
investigate the effect of changing the density of nodes, communication range, interference
range, and number of communication channels. We also compare two types of networks to

provide insight on the effect of arranging transmitters differently.

4. What strategies for maximizing the impact of a jamming attack are most beneficial? We inves-
tigate the effect of changing the number of potential jamming device locations, the jammer’s

budget, and the jamming range.

5.1 Experimental Setup

All experiments were performed using the cutting plane algorithm described in Section 4.1 applied
to the Cormican formulation (3). Two extensions were added to the model: multiple communication
pairs (see Section 3.3.1) and multiple channels (see Section 3.3.3).

The experiments were run on two types of networks. The first is a n X n grid network; Figure
2 shows a 3 x 3 grid network. The second type is a 54-node network assembled at Carnegie Mellon
University’s Intel Berkeley Research Lab [5], which we denote as “CMU”; the network is shown in
Figure 3. The default grid network is a 7 x 7 grid network, which has a node count (49) comparable
to the number of nodes in the CMU network. For all networks, the nodes were placed inside a unit
square. Thus, the lateral and vertical distance between nodes in the grid network is ﬁ In the
default instance, each network has a single channel.

For each of the networks, 16 communication pairs were used, each having a desired commu-
nication rate generated randomly from the interval [0,2]. For the grid networks, the orgin and
destinations were placed at the corners of the network and at the midpoints of the edges. For
the CMU dataset, the origin and destination of each communication pair were generated randomly
without replacement from the set of nodes. The default communication range used was 1/6, which
is the lateral and vertical distance between nodes in the default 7 x 7 grid network. The interference
range was set to a; = 1.75¢; for all i € N; the multiplier 1.75 was recommended by Iyer et al. [15].
The set of possible jamming devices locations, £, is an NxN grid overlaid on top of the communi-
cation network. The default is a 5 x 5 grid, resulting in 25 possible locations. The jamming range

e, was set to 1/3 for all jamming devices.

15



@@@@ @
@ ®@ Y90

® @ @

@ @

@ @ o

® O

@ @

Y@ ®®
80 L 0% %4

Figure 3: CMU network

The following model parameter values were used in all of the experiments. The cost of locating
a jamming device, 1y, was set to 1 in all experiments, so the jammer’s budget, R, was set to integer
values. The arc capacity was set to ux = 1 for all arcs k € A.

Table 1 lists the default parameter values used in all the experiments, unless otherwise indicated.

Table 1: Dataset parameter values used in experiments

Parameter Baseline
value
Network dataset grid 7x7
Number of channels 1
Number of communication pairs 16
Communication rate for each pair, D,, Unif(0,2)
Communication range, ¢; %
Interference range multiplier 1.75 [15]
Number of possible jamming devices 25
locations, | L]
Jamming range, e 1/3
Number of jamming devices, R 2

5.2 Effect of Limiting the Number of Hops

We used the path-based formulation (5) to vary the number of hops allowed on a path and we
observed the effect on throughput. Rather than including all paths in the formulation, we generated

them dynamically using a delayed row generation approach, which dynamically adds Constraints
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(5b). Specifically, the separation problem is a shortest path problem on the connectivity graph
G, with each arc k having a weight (85 + > _cp, ¢). In summary, we solved formulation (5) by
generating two types of constraints in a delayed fashion: Constraints (3d) and Constraints (5b).
Because the separation problem for Constraints (5b) is a shortest path problem, which is much
faster than the maximum weight independent set subproblem, we only generate Constraints (3d) if
no more Constraints (5b) can be added.

Table 2 shows the optimal throughput for three values of the maximum number of hops. The
first value, 14, is the minimum number of hops on a feasible path from one corner of the grid-7x7
dataset to the opposite. (The table also shows the runtime on a Dell laptop with a 2.70 GHz Intel
i7 processor and 8 GHz of RAM.)

As Table 2 shows, the effect of the maximum number of hops was mostly insignificant. The only
meaningful difference was for the grid-7x7 dataset with 3 jamming devices, indicating that having
more possible routes can be beneficial when the network is subject to a more intense jamming
attack. In addition, no consistent difference was noted in run time for different values of the

maximum number of hops.

Table 2: Maximum number of hops vs. optimal throughput

Dataset Jamming Maximum Runtime Optimal
Budget number of (s) throughput
hops
14 168 0.500
1 18 221 0.500
24 174 0.500
14 133 0.250
cmu 2 18 117 0.250
28 123 0.250
14 33 0.000
3 18 55 0.000
28 38 0.000
14 526 1.062
1 18 638 1.065
28 619 1.065
14 1222 0.856
grid-7x7 2 18 1222 0.854
28 1600 0.857
14 1839 0.725
3 18 2111 0.744
28 1851 0.744
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5.3 Runtime of Solution Procedure

Table 3 lists the runtimes for various datasets and problem instances. All experiments were run on
compute nodes contained in a High Performance Computing Cluster using a 64-bit Linux operating
system. A node has 2 Xeon X5670 Intel processors, which each have 8 cores and a clock speed
of 2.93GHz and share 24GB of memory. The cutting plane algorithm was implemented with the
Python interface for the Gurobi Optimizer [11], using the LazyConstraints feature. The maximum
weight independent set separation problems were solved using Gurobi’s branch-and-bound solver.
Table 3 shows the runtime for several solution procedures for several datasets. Each show shows
the dataset, the number of channels (C'), the number of jamming devices that can be located (R),
and the run time for several procedures: branch-and-cut described in Section 4.1 (B&C), Benders
decomposition described in Section 4.2.1 (Ben), and Benders decomposition implemented Gurobi’s
branch-and-cut algorithm using LazyContraints (BB&C). If the algorithm did not reach optimality
after two hours, we report the percentage Gap = (UB — LB)/LB; we list “-” for cases in which no

feasible solution was found after two hours.

Table 3: Runtime of various problem instances

Run time (s)

Dataset ¢ R pe G Ben BB&C
1 1 7 2 23
- 2 1 30 79 74
1 3 5 21 23
9 3 32 120 208
1 1 194 255 249
grid- 9 1 349 577 932
<7 1 3 265 10% 2690
2 3 4610 24%  81%
1 1 428 1142 1156
erid- 9 1 4333 10%  21%
8x8 1 3 348 6795 161%
2 3 5% 5T%  282%
1 1 800 2353 2962
erid- 2 1 4708 22%  42%
9x9 1 3 6065 T73% -
2 3 - 88%  476%

As Table 3 shows, the branch-and-cut algorithm almost dominates the other algorithms inves-
tigated, with the exception being the grid-9x9 instance with C' = 2 and R = 3. One reason for
the success of branch-and-cut is that it adds a cut for every new maximum weight independent set

found. Conversely, in the Benders decomposition algorithms tested, often many maximum weight
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independent set problems must be solved to solve the Benders subproblem; therefore, the computa-
tional cost per cut is much higher. Thus, the branch-and-cut algorithm is analogous to a multi-cut
version of Benders decomposition, which performs better than single-cut Benders decomposition on
some problems. Another reason for the success of the branch-and-cut algorithm is that the Gurobi
software may have been able to add more advanced cuts during the branch-and-bound procedure.
On the whole, the classic Benders decomposition procedure (as described in Section 2) performs
better than Benders implemented within branch-and-cut. We also added several modifications to
the Benders decomposition procedures, such as Pareto optimality cuts [25] and knapsack inequali-
ties (see Santoso et al. [39] for an example), but these additions actually increased the run time of
the Benders decomposition procedures.

As Table 3 also shows, the run time generally increases with the number of nodes, as seen
by comparing the runtimes of grid-7x7 instances with the runtime of their grid-8x8 and grid-9x9
counterparts. However, instances of the CMU dataset have significantly smaller runtimes than their
grid-7x7 counterparts. This seems to be attributable to the fact that the transmitters are arranged
differently in these two datasets. The runtime uniformly increases with an increase in the number
of channels, which can be attributed to the fact that increasing the number of channels from 1 to
2 results in doubling the number of arcs in the network. The results show no consistent effect of
the jamming budget on the runtime. (Note: the runtime of 7s for the CMU dataset with 1 channel
and a jamming budget of 3 is small because in this case the minimum throughput is 0.0, making
the instance easy to solve.)

In summary, the network size appears to be the most significant driver of runtime, followed
by the number of channels. The capability of the algorithm presented in this paper is apparently

reached for a 9x9 network (81 nodes).

5.4 Insights Into Designing a Network That is Robust Against Jamming At-
tacks

Strategy #1: Increase the Density of Nodes, Strategy #2: Increase the Communication
Range, and Strategy #3: Decrease the Interference Range

When designing a wireless network, a decision-maker is able to decide on several characteristics.
First, the designer can decide on the density of transmitters in the network. Second, the designer
decides on the type of transmitter to use, which determines the communication range. In addition,
we also investigate the strategy of decreasing the interference range of nodes, although this is not a
real possibility in most cases.

Table 4 reports the optimal throughput for different sizes of datasets as well as different values
of the communication range and interference range. Two values are used for the communication
range: 1) the value 1/6, which is the range needed for every node to be able to communicate
with its (up to four) nearest neighbors (North, South, East, West) in the grid-7x7 dataset and 2)
v/2/6, which is the range needed for any node in the grid-7x7 dataset to be able to communicate
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to its nearest neighbors as well as any node diagonal to it (NE, SE, NW, SW). Three values of
the interference range were used: 1) 0, which represents no interference, 2) the interference range
is equal to communication range, and 3) the interference range is 1.75 times the communication

range.

Table 4: Throughput vs. number of nodes, communication range, and interference range

Dataset Comm. range Inf. range Throughput

cmu 1/6 0 0.5

cmu 1/6 1/6 0.3

cmu 1/6 0.29 0.3

cmu \/5/6 0 1.0

cmu V2/6 1/6 0.7

cmu V2/6 0.41 0.5
grid-7x7 1/6 0 2.0
grid-7x7 1/6 1/6 1.1
grid-7x7 1/6 0.29 0.9
grid-7x7 V2/6 0 2.0
grid-7x7 V2/6 1/6 1.0
grid-7x7 V2/6 0.41 0.6
grid-8x8 1/6 0 2.0
grid-8x8 1/6 1/6 1.3
grid-8x8 1/6 0.29 0.8
grid-8x8 V2/6 0 2.0
grid-8x8 V2/6 1/6 1.0
grid-8x8 V2/6 0.41 0.6
grid-9x9 1/6 0 2.0
grid-9x9 1/6 1/6 1.3
grid-9x9 1/6 0.29 0.6
grid-9x9 V2/6 0 2.0
grid-9x9 V2/6 1/6 1.0
grid-9x9 V2/6 0.41 0.5

The results displayed in Table 4 indicate, not surprisingly, that as the interference range in-
creases, the throughput decreases (between 33% and 114%). Thus, a decision-maker could improve
the throughput by selecting jamming devices that are more robust against interference.

One might expect that increasing the communication range would improve throughput. How-
ever, if the interference range is a multiple of the communication range (which is likely in practice),
then increasing the the communication range actually decreases the optimal throughput for the grid
networks. However, increasing the communication range does improve the throughput for the CMU
dataset, perhaps because the variability in the inter-node distances make connectivity paramount.

The results also show that for the grid networks, increasing the density of nodes (e.g., moving

from grid-7x7 to grid-8x8) may increase or decrease the optimal throughput. For no interference,
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increasing the node density does not help. When the communication and interference ranges are
both equal to 1/6, then increasing the size of the dataset does increase the optimal throughput,
although this increase is less when moving from grid-8x8 to grid-9x9. On the other hand, when
the interference range is 1.75 times the communication range (the default value), then the optimal
throughput decreases with the density of nodes. This result varies with the observed behavior of
wired network interdiction models, in which adding nodes typically improves the network’s robust-
ness to interdiction attacks because more redundant routes are added. This difference is likely due
to the fact that, for a constant interference range and jamming range, adding additional nodes
actually accentuates the effect of inference and jamming.

Finally, although the CMU and grid-7x7 datasets are of similar size (54 nodes vs. 49 nodes) the

grid-7x7 dataset appears to perform much better during a jamming attack.

Strategy #4: Increase the Number of Channels

Another option in designing a wireless network is to include transmitters with multiple channels on
which to send and receive signals. This naturally increases a network’s robustness against jamming
attacks because channels do not interfere with each other, meaning that adding channels results in
many additional non-conflicting routes.

Table 5 shows how the throughput increases as more channels are added. The increase is
significant, with the change ranging from 56% to 443%, although exhibiting diminishing returns.

Indeed, utilizing channel hopping is a popular technique for resisting jamming attacks.

Table 5: Throughput vs. number of channels

Dataset Number of Channels Throughput % Change

1 0.3
cmu 2 1.4 443%
3 2.1 58%
1 0.9
grid-7x7 2 2.4 180%
3 3.7 56%

Conclusions

In conclusion, increasing the number of channels appears to be the best strategy for designing a
network that will be robust against jamming attacks. The improvement in the optimal throughput
during a jamming attack is much more significant than the improvement for the strategy of reducing
the interference range. Other strategies, such as increasing the density of transmitters and increasing

the communication range, produced mixed results.
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5.5 Insights Into Jamming a Network
Strategy #1: Increase the Number of Potential Jamming Locations

In the optimization model used in this paper, the jamming device placement decisions are repre-
sented by a binary variable. Thus, the area of possible jamming device locations must be discretized,
turning the area into a finite set of points. With this construction, one must decide how many dis-
crete points to include in the model. In this section, we analyze the effect of the number of potential
jamming locations on the optimal throughput during a jamming attack.

As Table 6 shows, the number of jamming locations is usually insignificant, except for the CMU
dataset when the number of locations is increased from 9 to 16 and then to 25. The fact that the
throughput is relatively insensitive to the number of jamming locations bodes well for the jammer,
who can decrease the number of jamming locations (decreasing the number of binary variables in

the optimization model) without sacrificing solution quality.

Table 6: Throughput vs. number of potential jamming locations

Dataset Number of jamming locations Throughput

9 0.375
16 0.286

- 25 0.250
36 0.250

49 0.250

64 0.250

9 0.857

16 0.857

. 25 0.857
grid_7x7 36 0.857
49 0.857

65 0.857

Strategy #2: Increase the Number of Jamming Devices and Strategy #3: Increase the

Jamming Interference Range

A jammer may also try to increase the the number of jamming devices, or use jamming devices with
a larger range, in order to increase the efficacy of a jamming attack.

Table 7 reports how the optimal throughput changed in our experiments as a function of the
number of jamming devices and jamming range. We tested two datasets of similar size: CMU
(54 nodes) and grid-7x7 (49 nodes). Five values of the jamming range were used, each based on
the dimensions of the grid-7x7 network. First, 0 was used, in which case the jammer can only
simultaneously jam 1 device. Second, 1/12 was used, which is the jamming range needed to jam
two transmitters. Third, the value of v/2/12 = 0.118 was used, which is the range needed for the
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device to jam 4 transmitters if placed at the center of a cell in the grid. Fourth, we used 1/6 = 0.166,
a range that allows a device to jam 3 transmitters if placed on a corner, 4 if placed on an edge, and 5

otherwise. Finally, we used v/2/6 = 0.235, a range that allows a device to jam up to 9 transmitters.

Table 7: Throughput vs. number of jamming devices and jamming range

Throughput
Number of Jamming cmu grid-7x7
jamming range
devices
1 0 0.79 1.07
1 1/12 0.50 1.07
1 V2/12 0.50 1.07
1 1/6 0.50 0.94
1 V2/6 0.25 0.91
2 0 0.79 0.86
2 1/12 0.25 0.86
2 V2/12 0.25 0.86
2 1/6 0.25 0.50
2 V2/6 0.00 0.33
3 0 0.79 0.75
3 1/12 0.00 0.75
3 V2/12 0.00 0.75
3 1/6 0.00 0.00
3 \V2/6 0.00 0.00
4 0 0.79 0.50
4 1/12 0.00 0.50
4 V2/12 0.00 0.50
4 1/6 0.00 0.00
4 \V2/6 0.00 0.00
5 0 0.79 0.00
5 1/12 0.00 0.00
5 V2/12 0.00 0.00
5 1/6 0.00 0.00
5 V2/6 0.00 0.00

As Table 7 shows, increasing the jamming range monotonically decreases the optimal through-
put. Increasing the jamming range by one level caused the optimal throughput to reduce by between
25% and 100%. No difference in this effect is apparent between the two datasets.

In addition, increasing the jamming budget also decreases the optimal throughput. The decrease
for the CMU dataset is always either 25% or 0%. For the grid-7x7 dataset, the decrease was between
0% and 57%. This significant difference could be due to the fact that the 2-D grid arrangement of

the transmitters in the grid-7x7 network enables a jamming attack to disconnect the network more
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easily than if the transmitters were arranged without a pattern. Thus, while the grid-7x7 performs
better during an attack consisting of 2 jamming devices (see Strategies 1, 2, and 3) in the previous

section, overall the CMU network is more robust against a jamming attack.

Conclusions

The most beneficial strategy for a jammer interested in minimizing the network throughput during
a jamming attack would appear to be to increase the range of the jamming devices. Increasing the

number of devices also is beneficial.

6 Conclusions

6.1 Discussion

Wireless network security is currently an important topic, mostly because 1) wireless networks are
ubiquitous and 2) the wireless network medium is inherently vulnerable to attacks. A sub-area
of wireless network security is wireless network jamming, which has been studied by many in the
electrical engineering community but by few in the operations research community. In this paper,
we addressed one problem in wireless network jamming, namely the problem of where to place
jamming devices in order to minimize the throughput of a wireless network. Our paper is the first
to consider two important aspects of this problem: 1) wireless networks are subject to interference
and 2) network throughput is used as the optimization objective.

We solved this problem by formulating it as a mixed-integer bi-level program with an exponential
number of constraints in the inner problem. After using the standard approach of taking the inner
dual, we used a cutting plane approach to solve the bi-level problem to optimality. This cutting
plane approach, which was found to be superior to a Benders decomposition approach, was able to
solve networks of up to 81 nodes to optimality. Thus, we believe that this approach could serve as
a good foundation to build upon as others solve new problems in wireless network jamming subject
to interference.

We used our model and algorithm in a series of experiments with the goal of answering three

questions:

1. Does constraining the number of hops allowed on a path decrease the optimal throughput? We
did not find a significant relationship between the number of hops allowed and the optimal

throughput.

2. What strategies for designing a network to be jamming-resistant are most beneficial? We
found that increasing the number of channels appears to be the best strategy for designing
a network that is robust against jamming attacks. The benefit from this strategy is much
more significant than the benefit from reducing the interference range. Other strategies such
as increasing the density of transmitters and increasing the communication range produced

mixed results.
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3. What strategies for maximizing the impact of a jamming attack are most beneficial? We found
the most beneficial strategy is to increase the range of the jamming devices. Increasing the

number of devices is also beneficial.

6.2 Future Work

Wireless network jamming is a fertile ground for interesting optimization research, and yet this area
has not received much attention by the optimization community. Thus, many potentially fruitful
avenues exist for future research. The most obvious is to study how to design an optimal wireless
network that can optimize network performance during a jamming attack. Design decisions include
the layout of the transmitters, the amount of power allocated to each transmitter, the number of
channels, and the number of radios available at each transmitter. Next, although we focused on
the protocol model of interference, the physical model should also be studied from the standpoint
of interdiction. The cutting plane procedure used in this paper would still be valid, except that
rather than solving a maximum weight independent set problem, the separation problem would be

a maximum weight schedulable set problem [16], which is likely more difficult to solve.
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