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Abstract

Two methods of reducing the risk of disruptions to distribution systems are (1) strategically
locating facilities to mitigate against disruptions and (2) hardening facilities. These two activ-
ities have been treated separately in most of the academic literature. This article integrates
facility location and facility hardening decisions by studying the minimax facility location and
hardening problem (MFLHP), which seeks to minimize the maximum distance from a demand
point to its closest located facility after facility disruptions. The formulation assumes that the
decision maker is risk averse and thus interested in mitigating against the facility disruption
scenario with the largest consequence, an objective that is appropriate for modeling facility
interdiction. By taking advantage of the MFLHP’s structure, a natural three-stage formula-
tion is reformulated as a single-stage mixed-integer program (MIP). Rather than solving the
MIP directly, the MFLHP can be decomposed into sub-problems and solved using a binary
search algorithm. This binary search algorithm is the basis for a multiobjective algorithm,
which computes the Pareto-efficient set for the pre- and post-disruption maximum distance.
The multiobjective algorithm is illustrated in a numerical example, and experimental results
are presented that analyze the tradeoff between objectives.
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1 Introduction

This article addresses the problem of finding a set of facilities to locate and a set to protect in
order to optimally mitigate against facility disruptions. In particular, the objective of the problem
is to minimize the worst-case consequence incurred due to the disruption of facilities. Thus, this
objective is appropriate for a situation in which facilities are subject to interdiction, i.e., attacks by
an intelligent adversary. After a disruption occurs, a set of demand points are each assigned to their
closest non-disrupted facility. Thus, the consequence of a disruption is measured as the maximum
travel distance, i.e., the maximum distance from any demand point to its closest located and
operating facility. We call this problem the minimax facility location-hardening problem (MFLHP).
Further, this article also analyzes a bi-objective version of the MFLHP, simultaneously considering

the maximum travel distance both with and without disruptions.
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Distribution networks, such as power networks and supply chains, are ubiquitous throughout the
world. These networks consist of a set of facilities (power sub-stations, ports, distribution centers,
etc.) and set of customers that rely on the facilities. Because these facilities form the backbone of
distribution networks, facility disruptions often result in severe consequences. One recent example is
the 2011 Tohoku earthquake in Japan, which disrupted manufacturing facilities and caused several
Japanese automakers to halt car production for up to six months [16]. These severe consequences
have forced decision-makers to consider the possibility of facility disruptions when they design their
network of facilities. In addition, decision-makers also may choose to harden facilities to protect
them from disruptions. Facility hardening, a special case of facility protection, involves allocating
resources to a facility (e.g., additional security, retrofitting, etc.) to make it immune to failure
[30, 31, 33]. This paper serves to help decision-makers make better facility location and hardening
decisions by providing a mathematical model of these decisions and using this model to generate
insights about these decisions.

This research focuses on the maximum distance objective, which is also used in the classic p-
center problem [12]. Since this objective is concerned with minimizing the worst service experienced
by a demand point, it is appropriate for the public sector [9]. Researchers have cited numerous
potential applications for the maximum distance objective such as locating emergency vehicles and
facilities [13, 23, 32] and locating warning sirens [35]. This article also seeks to minimize the worst-
case disruption, i.e., the worst-case risk measure. The worst-case risk measure is well-suited for
risk-averse decision-makers, especially in critical infrastructure protection [5, 31, 29].

A growing amount of research exists on locating facilities subject to disruptions and hardening
facilities subject to disruptions. Several authors [7, 10, 34, 27] have developed models for locating
facilities subject to random disruptions. Other works have considered that located facilities are
subject to interdiction, i.e., intentional and calculated attacks. O’Hanley and Church [25] developed
a bi-level model for the problem of locating facilities to minimize the post-interdiction total weighted
covered demand. Drezner [10] developed a method to minimize the post-interdiction maximum
distance from a demand point to its closest located and operating facility. O’Hanley and Church
[25] optimized a weighted combination of the system performance before and after interdiction for
a facility location problem.

Rather than locating facilities, others have examined the problem of hardening a set of existing
facilities. O’Hanley et al. [26] and Li et al. [17] have presented models for hardening facilities subject
to random failures. Church and Scaparra [5, 30, 31] have studied the problem of how to harden
facilities in order to minimize the post-interdiction total weighted distance. O’Hanley et al. [24]
presented a bi-level model to optimally harden facilities in order to minimize the post-interdiction
total weighted covered demand.

Some researchers have developed models that include both facility location and facility harden-
ing. Snyder and Daskin [34] present extensions of the p-median and warehouse location models and

include perfectly reliable, i.e., hardened, and unreliable facility locations in their model. Specifically,



a facility is perfectly reliable if and only if it is located at a perfectly reliable location. Although
their study focuses on location, it would be possible to integrate location and hardening decisions
in their model if every geographical site had both a reliable and an unreliable location. However,
it is unclear whether using their model in this way, which would double its size, would be compu-
tationally tractable. Lim et al. [18] were the first to explicitly include both location and hardening
decisions in a single model. They present an extension of the warehouse location problem in which
the decision maker chooses between locating unreliable facilities and locating perfectly reliable, i.e.,
hardened, backup facilities at a higher cost. The authors assume one layer of supplier backup.
Thus, if a demand point’s primary facility fails, the demand point is then immediately assigned
to its hardened backup without checking if there is a closer operating facility. This assumption
simplifies the model and allows the authors to provide several useful analytical results. Li et al.
[17] extend the work of Lim et al. [18] but still assume one layer of supplier backup. The research
presented in this paper considers multiple layers of backup, allowing a demand point to be assigned
to its closest operating facility after a disruption. Aksen et al. [1] study an extension of the p-
median problem in which facilities are susceptible to interdiction. They present a tri-level version
of the budget-constrained median location model in which a defender locates and hardens facilities
and then an attacker destroys a number of unhardened facilities. Their works extends the work of
Lim et al. [18] by modeling multiple layers of backup. Aksen et al. [1] study several methods for
solving their problem including a tabu search algorithm and a two-phase heuristic. The research in
this paper builds on the work of Aksen et al. [1] by providing an exact procedure for solving the
integrated location-hardening problem, rather than a heuristic procedure.

This article builds upon the facility location and facility hardening literatures by making the
following main contributions. (1) A new model for integrating facility location and hardening
decisions; in particular, a natural three-level formulation is converted to a single-level mixed-integer
program (MIP) by taking advantage of the structure of the MFLHP. This model is accompanied
by a binary search solution procedure along with a method for obtaining a lower bound. (2) This
integrated model and solution method forms the basis of an algorithm that computes the complete
Pareto-efficient set for the pre- and post-disruption maximum distances. This algorithm is based
on a method from Medal et al. [22] that optimizes facility location decisions but does not model
facility hardening. (3) A set of computational experiments provide results that should help decision-
makers better understand the tradeoff between the pre- and post-disruption maximum distances
when making the decision to locate and harden facilities subject to disruptions. Toward this end
we present the following analyses: (i) an analysis of the Pareto-efficient set between the pre- and
post-disruption maximum distances; (ii) an analysis of the penalty incurred for optimizing either
the pre- or post-disruption radius in isolation; and (iii) an analysis of the benefit of considering
facility hardening when locating facilities subject to disruptions.

The remainder of this article is as follows. In Section 2 the MFLHP is described and a three-level

model of the problem is converted to a single-level MIP. In Section 3, two algorithms are presented



for single- and bi-objective versions of the MFLHP. An example that demonstrates the bi-objective
MFLHP is given in Section 4. Section 5 reports the results of computational experiments on the
single- and bi-objective MFLHP. Section 5 concludes the article with a summary and a discussion

of future work.

2 Problem Description and Models

The purpose of the MFLHP model is to

locate a set of facilities and harden a subset of the located facilities in order to minimize
the worst system performance over all possible disruption scenarios consisting of the
disruption of r facilities. The system performance for a disruption scenario is the
mazimum distance from a demand point to its closest located and operating facility.

The MFLHP model is appropriate for two situations: 1) facilities are vulnerable to naturally-caused
disruptions and the decision-maker wishes to mitigate against the worst-case consequence due to
the loss of r facilities and 2) facilities are subject to a strategic attacker who seeks to attack up to
r facilities in order to generate the largest consequence possible and the decision-maker wishes to
mitigate against these attacks.

To understand the model, it may help to divide it into three stages: 1) the mitigation, 2) the
disruption, and 3) the response. We use the generic term facility to refer to a physical entity
that we are locating and hardening. The mitigation stage, which happens before the disruption
occurs, involves actions taken to mitigate against the disruption. The mitigation decisions in our
model concern where to locate facilities and which facilities to harden, and these decisions are made
simultaneously. If a facility is hardened in our model, it is always available to serve demand points.
In the disruption stage, the disruption causes exactly r facilities to fail. Thus, if p facilities are
located, there are (f ) combinations of facility disruptions. (Later, we show that we do not have
to consider all combinations.) In the response stage, demand points are served by their closest
located facility. Since the decision in this stage is so simple—find the closest facility to each demand
point—this stage will be implicit in the model.

To understand the three-stage model, it is helpful to think of it as consisting of three players
acting in sequence: a defender, an attacker, and an operator. In the first stage, the defender
mitigates against the actions of the attacker by strategically locating and hardening facilities. The
defender’s objective is to minimize the attacker’s objective. The attacker, knowing the location and
hardening actions taken by the defender, then destroys r facilities. The objective of the attacker
is to maximize the operator’s objective, i.e., maximize the post-disruption radius. The operator,
observing the actions of the attacker, pairs each demand point with its closest available facility in
order to minimize the post-disruption radius.

The following notation will be used to describe the problem. Let Z be a set of potential facility

locations, £ be a set of located facilities, and H be a set of hardened facilities. Since only located
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facilities can be hardened, H C L. Denote by x(L,H) the cost of all location and hardening
activities, which is subject to a budget b. (Note that b must be large enough to ensure that there
exists a feasible solution (£, ) such that|£| > r+ 1 or [H| > 1.) The set O is the set of located
facilities that fail in a disruption; at most r facilities can fail in a disruption. A set of demand points
is represented by the set J. We measure how effectively a facility located at ¢ can serve the demand
point located at j using a measure ¢;;. The measure ¢;; could be the distance between 7 and j or
a function of the distance between ¢ and j. It could also represent the distance multiplied by the
demand weight w;. Let ® be a map that holds the assignments of demand points to facilities; thus,
®(j) is the facility assigned to demand point j.

Thus, the defender’s optimal objective value, U*, is equal to the optimal value of the following

three-level optimization problem:

min H(L,H) (1a)
HCLCT
st.x(L,H) <b
H(L,H) = max  S(L£,0) (1b)
OCL\H
s.t. |0 <r
S(L,0) = Hgn max g (j), (1c)
J

st.®(j) e L\NO VjeJ.

This is the integrated MFLHP model. The defender’s problem (1a) is to locate a set of facilities £
from a set of candidate locations Z and harden a subset, H, of the located facilities to minimize
the post-disruption radius H (L, H). The cost of location and hardening must be within a budget,
b. The interdictor’s problem (1b) is to destroy a subset, O, of the located, unhardened facilities in
order to maximize the post-disruption radius, S(£, Q). The interdictor can only destroy r facilities.
The operator’s problem (1¢) is to assign demand points to facilities. Since the operator’s problem is
uncapacitated, it is optimal to assign every demand point to its closest facility. Thus, the operator’s
problem can be represented by taking the maximum distance from any demand point to its closest

non-disrupted facility.

2.1 Describing the Most Disruptive Facility Disruption Scenario

Rather than trying to solve the three-stage formulation, the MFLHP’s structure can be exploited
to formulate a single-stage model. In particular, because of the minimax distance objective of the
integrated MFLHP model, the interdictor’s optimal solution can be described as a simple expression.

Because of the structure of the interdictor’s problem, we can determine exactly which facili-

ties the interdictor would want to destroy to optimize his objective without having to solve an



optimization problem. After the sets £ and H have been chosen, the interdictor’s problem is

UM* = max  S(£,0), (2)
OCL\H

such that O consists of no more than r facilities. Let Eé- be the set of facilities closer to demand point
j than facility 7 is. Let O*(L,H) be the set of facilities that optimizes the interdictor’s problem

(maximize the post-disruption maximum radius) given a location-hardening solution (£, H).

Definition 1. Let U™* be the optimal post-disruption radius. Demand point j’ and facility i’ are
a post-disruption bottleneck pair if U* = ¢iy. In this case, j' is called a post-disruption bottleneck

demand point and i’ is called a post-disruption bottleneck facility.

Theorem 1. Let D;(L) = minep ¢y, let Dj(L) = maxer ¢y, and let LY C L be the set of the k
closest located facilities to j. The interdictor’s optimal strateqy is the following. First, choose the

bottleneck demand point as

j'=arg max min{D;(L*"), D;(H)}.
jed
Next, depending on which facilities are located and hardened, take one of the following actions.

i) If the v facilities closest to j' are unhardened, then interdict the r closest facilities to j'. i) If
the k™ (k <r) closest facility to j' is hardened, then interdict the (k — 1) closest facilities to j'.

Proof. The interdictor is able to force the post-disruption assignment distance (PDAD) for a demand
point j' € J to equal min{Dj/(E;frl), D;/(H)} by choosing actions i) or ii) depending on which facil-
ities are located and hardened. Action i) causes j's PDAD to equal D (L% ') and Action ii) causes
it to equal D;(#). Since the interdictor can only destroy r facilities and a demand point is always
assigned to its closest operating facility after a disruption, the quantity min{Dj(E;H), D;(#H)} is an
upper bound for the PDAD for any demand point j € J. Since the interdictor is a maximizer and
the problem has the bottleneck property (i.e., the interdictor’s objective value depends on only one

demand point), he or she will focus on the demand point with the largest PDAD upper bound. [J

The following corollary, following directly from Theorem 1, provides a simple expression of the

interdictor’s optimal objective value, which will help simplify the three-level model.

Corollary 1. The interdictor’s optimal objective value is equal to

max min{D;(L;"), D;(H)}. (3)
jeJg



2.2 Single-Level Model

By Corollary 1, the interdictor’s maximization problem (given a location-hardening solution (£, H))
can be reformulated as the problem of simply choosing a demand point, j', with the largest post-

disruption assignment distance to be the post-disruption bottleneck demand point, i.e.:

H(L,H) = max min{D;(L;"), D;j(H)}, (4)
jeJg

Substituting (4) for (1b), the three-level problem (1) converts to the following minimax problem:

UT* = mi in{D;(L;™), D; 5
Aoin, maxmin{ D;(£57), Di(H)} (5)

where . = {(L,H): LI, H C L, x(L£,H) < b} is the set of feasible location-hardening solutions.

2.3 MIP Model

Model (5) has the minimax structure of a bottleneck problem [14] and can thus be reformulated as
a single-level MIP. Let W;; be a variable that is 1 if ¢;; is an upper bound on the post-disruption
assignment distance (PDAD) for demand point j and 0 otherwise. Let X; be a binary variable that
is 1 if a facility is located at ¢ and 0 otherwise and Y; be a variable that is 1 if a facility at ¢ is
hardened and 0 otherwise. The cost of locating a facility at ¢ is f;, and the cost of hardening a
facility at ¢ is g;.

A MIP formulation of the integrated MFLHP model is:

min U (6a)
st. UM >¢;Wy VieZIjed, (6b)
r+ D)Wy <(r+1)Yi+ > Xy VieIjeJ, (6¢)
i’EI:d)i/]- <¢ij
Y Wy=1 vjeJ, (6d)
i€l
Y, <X; Viel (6f)
Z JiXi + Zgz‘yz' <, (6g)
i€ €L
X, Y; €{0,1} VieZ, (6h)
W, €{0,1} VieZjeJ. (61)

The objective (6a) is to minimize the post-disruption radius, which is the defender’s objective.
Constraints (6b) require that the interdictor’s objective is equal to the maximum of all of the PDAD
upper bounds, obeying Proposition 1. Constraints (6¢) ensure that the PDAD upper bound for a



demand point j is equal to min{D;(L;™"), D;(H)}. If a facility ¢ is hardened, ie., ¥; = 1, then
¢ij = D;(H) in an optimal solution. If r facilities closer to j than ¢ are located and i is located,
ie., Zi/elzwjgmj Xy =r+1, then ¢;; = D;(£;*") in an optimal solution. Constraints (6d) require
every demand point to have an upper bound. Constraints (6e), although not necessary because of
the presence of Constraints (6¢), tighten the LP relaxation. Constraints (6f) prevent non-located
facilities from becoming hardened. Constraint (6g) is a budget on the location and hardening costs.

Constraints (6h)—(6i) require that the variables be binary.
Theorem 2. The single-level MIP formulation (6) is equivalent to the three-level model (1).

Proof. Let £L ={i: X; = 1} and H = {i : Y; = 1} be the set of located and hardened facilities
corresponding to a solution to (6). (i) A feasible solution to (6) obeys the requirement H C L C T
in (1) because Constraints (6h) enforce £ C Z, and the coefficients (f; + g;) for each Y; in (6g)
ensure that every hardened facility is also located, enforcing H C L. (ii) In addition, Constraint
(6g) is simply a concrete instance of the abstract constraint x(£,H) < b in (1). (iii) Finally,
we will demonstrate that minimizing U™ in (6) subject to Constraints (6b)—(6i) is equivalent to
minimizing H(L,H) in (1). Because of Constraints (6b) and (6d), U™ = maxjcs ¢a(j);, Where
P(j) is the facility ¢ for which W;; = 1. Because of the bottleneck structure inherent in (6a) and
(6b), there exists a demand point j’ such that U = da(j1),5; €., 7' is a bottleneck demand point.
Because of Constraints (6¢), the feasible values for ®(j') include all ¢ for which ¥; = 1 and all ¢ for
which > ... b1 iz Xy = r+1. Because of the minimization in (6a), ®(;’) will be chosen in a way
that minimizes ¢g;/) . Thus,
UM = ¢gg = min{iZZi/ez:%,ﬂH;i:j/ P Pijrs 11{/1131 Gijr}
= min{Dy (£, Dy (0} = s winf (65, D4(30)
J e

which by Corollary 1 is equal to H(L,H). Therefore, since the single-level MIP formulation (6) is
equivalent to minimizing H (L, #H) subject to the Constraints H C £ C 7 and x(L,H) < b, the
theorem holds. [

2.4 Alternate Formulation

We also tested an alternate formulation of Model (6) which involves redefining the X and Y vari-
ables. Let X; be a binary variable that is 1 if a facility is located but not hardened at ¢ and 0

otherwise and Y; be a variable that is 1 if a facility at ¢ is located and hardened and 0 otherwise.



The alternate formulation is as follows:

(MIP-Alt) min U (7a)
s.t. (6b) — (6d) (7h)
Wi <X;+Y; VieLjeld, (7c)
D SXi+ ) (fitg)Yi<b, (7d)
1€T 1€T
(6h) — (6i). (7e)

Constraints (7c¢) and (7d) are revised versions of Constraints (6e) and (6g), respectively. Pre-
liminary tests showed that the alternate model (7) solved faster than Model (6).

3 Solution Methodology

Model (6) can be solved using an off-the-shelf MIP optimizer such as CPLEX. However, preliminary
experiments indicated that this approach would be computationally prohibitive. Because of the
bottleneck structure of the integrated MFLHP model, we chose to use a binary search (BS) algorithm
instead. Hochbaum and Shmoys [14] showed that all bottleneck problems can be solved by solving
a series of auxiliary problems within a binary search algorithm that searches over values in the set
of all possible radii. These auxiliary problems can be thought of as inverses of their corresponding
bottleneck problem. Specifically, this auxiliary problem takes a radius value as an input and outputs
the cost of covering all objects within that radius.

Empirical evidence has shown that a binary search algorithm works well for the p-center problem,
which is also a bottleneck problem [11]. The p-center problem is to find a set of p located facilities
that minimize the radius. The auxiliary problem for the p-center problem is the set-cover problem
with unitary costs, which is still an NP-hard problem [15]. If some radius 0 is given as an input to
the set-cover problem, the set-cover problem outputs how many facilities must be located, i.e., the

0% be the optimal radius and p*(§) be

cost, so that all demand points are covered within §. Let U
the optimal number of facilities needed to cover all demand points within §. If p*(d) is greater than
or equal to p, then U is at least § and ¢ is a new lower bound. If p*(d) is less than p, then U©* is
at most ¢ and 0 is a new upper bound. Thus, a binary search can be performed over all values of §
to find the optimal radius, U®*. Binary search has been shown to be an effective solution method
for the p-center problem because the set-cover problem with unitary costs is easier to solve than
the p-center problem itself.

Similar to the solution approach for the p-center problem, in this article we solve the integrated
MFLHP using a binary search algorithm. However, we use an auxiliary problem that is tailored for

the MFLHP along with new upper and lower bounds and a new heuristic.



3.1 Auxiliary Problem

To use a binary search algorithm for the integrated MFLHP, the auxiliary problem must first be
described. Define U™ as the radius for the auxiliary problem. (Note that U™ is now a parameter
and not a variable, as it was in Model (6).) To evaluate whether a particular U(") is above or below

the optimal post-disruption radius, the set-cover problem with location and hardening (SCP-LH)

is used:
SCP-LH(U™,r) min Zfin' + ZYQ (8a)
icT i€l
st. (r+1) Y Vit Y Xizr+l VjeJ, (8b)
i:qﬁijSU(T) i:(;SijSU(T)
Y, <X, VieTl, (8¢c)
X, Y, €{0,1} Viel. (8d)

The SCP-LH minimizes the cost required for every demand point to have a post-disruption
assignment distance less than or equal to U). The objective (8a) is to minimize the total cost of
location and hardening. Constraints (8b) require that for each demand point j, either r 41 facilities
within U™ of j must be located or at least one facility within U of j must be hardened. Since
the set-cover problem is a special case of SCP-LH(U™ r) (set 7 = 0 and set f; = 1,Y; = 0 for all
i), SCP-LH(U™, r) is also NP-hard.

Note that an alternate version of SCP-LH can be constructed by redefining the X and Y variables
as in Section 2.4. In this alternate model the objective (8a) changes to Y., fiXi+> ;.7 (fi+ )Y,
but Constraints (8b) remain unchanged. We refer to this alternate model as SCP-LH-Alt. Because
SCP-LH-Alt outperformed SCP-LH in preliminary testing, we use SCP-LH-Alt throughout the rest
of this paper.

3.2 Binary Search Algorithm

The binary search algorithm for the integrated MFLHP is similar to the binary search algorithm
for the p-center problem. In addition to the modified auxiliary problem, we also add a heuristic for
the auxiliary problem and use a polynomial algorithm to obtain bounds for the integrated MFLHP.
The binary search algorithm is described in Medal [21].

Before starting the binary search, we attempt to find good upper and lower bounds for the
integrated MFLHP to reduce the search space of the algorithm. In particular, we apply the binary
search algorithm to the linear-programming relaxation of the auxiliary problem (8). Let the binary
search algorithm that uses the linear-programming relaxation of the auxiliary problem be called the
relazed binary search algorithm. This idea was first employed by Elloumi et al. [11] for the p-center
problem.

We compute a binary search (BS) lower bound for the MFHLP by applying the relaxed binary
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search algorithm. The optimal radius returned by the relaxed binary search algorithm is a lower
bound to the integrated MFHLP. We add the following step to the relaxed binary search algorithm so
that it also returns an upper bound. Each iteration of the relaxed binary search algorithm produces
a new midpoint index; let D;,q4.. be the distance corresponding to this index. To obtain a heuristic
upper bound, solve SCP-LH-Alt(D;p4e,) using a greedy algorithm (see Medal [21]). This greedy
algorithm extends an algorithm by Balas and Ho [3] for the set cover problem and sequentially adds
facilities to be located and hardened based on their costs of location and hardening and how many
additional demand points they can cover. If the total cost of this heuristic solution to SCP-LH-
Alt(Djnger) is less than the budget (b), then Dj,4e, is a new incumbent lowest upper bound.
There are other ways to obtain bounds for the integrated MFLHP. A linear-programming lower
bound (LP) can be obtained by solving the linear-programming relaxation of the MIP model (6).
A partial relaxation (PR) lower bound can be obtained by solving the MIP model (6) with only X;
and Y; relaxed for all 7. In our experimentation, we found that the BS lower bound required much
less run time than the PR lower bound and yet the BS lower bounds were reasonably close (16%

relative error, on average) to the PR lower bounds.

3.3 Multiobjective Optimization: Pre-Disruption Radius Vs. Post-

Disruption Radius

Although the MFLHP optimizes the post-disruption radius (PostDR), decision-makers may also
be concerned about the pre-disruption radius (PreDR), especially if disruptions are rare. Because
these two objectives conflict, an effective solution approach is to generate a set of Pareto-efficient
solutions, allowing a decision-maker to choose from among them based on his or her preferences.
Because the binary search algorithm presented in Section 3.2 efficiently computes the optimal
solution to the MFLHP, it can also be used to efficiently compute the Pareto-efficient set for multiple
objectives. To describe how to compute the Pareto-efficient set for the pre-disruption and post-
disruption radii, let us introduce two new optimization problems. Let MFLHP(-, U(") denote the
problem “minimize the pre-disruption radius such that the post-disruption radius is no greater
than U, and MFLHP(U®,.) denote the problem “minimize the post-disruption radius such that
the pre-disruption radius is no greater than U®. Both of these problems can be solved using a
modification of the binary search algorithm from Section 3.2. Specifically, a single-cover constraint

is added to the SCP-LH(U),r) auxiliary problem, resulting in the distance-constrained set-cover
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problem with location and hardening (DC-SCP-LH):

DC-SCP-LH(U®, U™, r) min > fiX;+ > g (9a)
€L i€
st > X;>=1 VjedJ, (9b)
i< <y(0)
V<X, Viel (9¢)
r+1) > Yi+ Y Xizr+l VjieJ,  (9d)
ity <U() irhi <U ()

which minimizes the cost of location and hardening (9a) subject to the requirements that i) the
pre-disruption radius be at most U(® (9b) and ii) the post-disruption radius be at most U (9d).
The DC-SCP-LH(U©®, U™ r) can be used to solve MFLHP(-,U)) and MFLHP(U©,.) via

binary search:

o To solve MFLHP(-,U(), fix U in Constraints (9d) and vary U® in Constraints (9b) via

binary search (see Section 3.2) in order to find the optimal pre-disruption radius, U(®

« To solve MFLHP (U .), fix U in Constraints (9b) and vary U in Constraints (9d) within

a binary search algorithm (see Section 3.2).

Given the problems MFLHP(-,U™) and MFLHP(U® . .), we can use the e-constraint method of
multiobjective optimization [6] to generate the Pareto-efficient set. The e-constraint method was
used for the p-center problem with facility disruptions in Medal et al. [22] and is modified in this
article to include facility hardening. Specifically, the auxiliary problem DC-SCP-LH(U®, U™ r)
is used in place of the auxiliary problem employed in Medal et al. [22]. Algorithm 1 describes this
e-constraint method. On line 4, an upper bound is obtained by taking the maximum distance from
a demand point j to its (r 4+ 1) closest facility site, denoted as ’LT—H On line 6, MFLHP(U,EO), )
is solved, returning the post-disruption radius for the &' member of the Pareto set, and on line 8,
MFLHP(., U,gr) — €) is solved, returning the pre-disruption radius. The value € is subtracted from
U ,ET) to ensure that the pre-disruption radius corresponding to Pareto point (k + 1) is greater than

the pre-disruption radius corresponding to Pareto point k.
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Algorithm 1 Constructing the Pareto-efficient set for pre- and post-disruption radius objectives.
1 function GENERATEPARETOEFFICIENTSET
2 k < 0; € <—a small number

3 Set of Pareto-efficient points S < ()

4 Solve MFLHP(-, maxij{qbigﬂj}), returning minimum PreDR U,go).

5 loop

6 Solve MFLHP(U,EO), -), returning U,ET). > Min. PostDR s.t. PreDR constraint.
7 S+ Su{W, U

8 Solve MFLHP(-, U,gr) — €), returning U,i?r)l. > Min. PreDR s.t. PostDR constraint.
9 if MFLHP(-, U"” — ¢) is infeasible, break.

10 k<« k+1

11 return §

4 Illustrative Example

We will first demonstrate our research on a simplified example, using a dataset from Daskin [§]
that consists of 150 nodes representing the most populous cities in the United States. This example
attempts to locate seven facilities to service each of the 150 demand points. To make solutions
easier to visualize, each of the demand points are given a unit weight. Without considering facility
disruptions, the design objective is to minimize the maximum distance from a demand point to
its closest facility. Thus, this is the classic p-center problem [12]. Because the p-center problem is
known to produce many optimal solutions, we utilize the total distance as a secondary objective in
all of the results presented in this section and the next. See Appendix A for a model that optimizes
the total distance subject to constraints on the pre-disruption and post-disruption radii.

Figure 1a shows the optimal solution to this 7-center problem. Seven facilities are located in the
optimal solution, and the (pre-disruption) radius for this solution is 420 miles. One limitation of the
p-center model is that it may produce solutions that are vulnerable to facility disruptions. Figure
1b shows how the solution is impacted by the worst-case facility disruption scenario consisting
of the disruption of » = 3 facilities. Specifically, the demand points assigned to the facilities at
Albequerque, NM; Boise City, ID; and Glendale, CA must be reassigned, causing the radius to
increase. The new radius, the post-disruption radius, is 1,624 miles which is a 286% increase over

the pre-disruption radius.

A decision-maker is likely to be concerned about this 286% increase in the radius. To reduce
the potential increase in the radius the MFLHP model can be used to locate and harden facilities.
However, it is likely that the decision-maker is interested in both the pre-disruption and post-
disruption radii. In many cases a decision-maker may not know his or her preferred tradeoff between

the pre-disruption and post-disruption radii. Thus, it would be helpful if the decision-maker had a
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Figure 1: Optimal solution to 7-center problem

set of Pareto-efficient solutions to choose from. Fortunately, Algorithm 1 can be used to compute
the Pareto-efficient set for the pre-disruption and post-disruption radii.

Figure 2 shows the Pareto-efficient set for the pre-disruption and post-disruption radii. (For
this example, we assume that the cost of hardening a facility is the same as the cost of locating a
facility (e.g., g; = fi).) The left and right endpoints of the Pareto set are obtained by optimizing the
post-disruption and pre-disruption radii, respectively, in isolation. The Pareto set is relatively flat
when the post-disruption radius is between 902 and 1,381. This means the post-disruption radius
can be decreased from 1,381 to 902 (35% reduction) while only increasing the pre-disruption radius
from 543 to 612 (13% increase). Overall, the slope of the curve is gradual, indicating that a large
reduction in the post-disruption radius can be obtained with a modest increase in the pre-disruption
radius. More analysis on the tradeoff between the pre-disruption and post-disruption radii is given

in Section 5.1.

Figure 3 shows three of the solutions corresponding to Pareto-efficient points in Figure 2. Figures
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Figure 2: Pre-disruption radius vs. post-disruption radius: Pareto-efficient set

3a, 3¢, and 3e show the solutions and assignments without disruptions for solutions 6, 9, and 11 of
the Pareto set in Figure 2. Figures 3b, 3d, and 3f show the post-disruption assignments. (Solution
1 is shown in Figure 1.) As the Figures show, as the post-disruption radius receives more emphasis,
less of the budget is spent on location and more is spent on hardening. A description of each of the

solutions in Figures 3a-3f is given in the supplemental material.
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Figure 3: Optimal facility location and hardening solutions

5 Experimental Results

This section reports the results of computational experimentation with the MFLHP. Section 5.1
analyzes the tradeoff between the pre-disruption radius and post-disruption radius. Section 5.2
analyzes the benefit of including facility hardening when locating facilities that are subject to
disruptions.

All experiments were run on a compute node on the Arkansas High Performance Computing
Cluster. The node has 2 Xeon X5670 Intel processors, which each have 6 cores and a clock speed
of 2.93GHz. The total of 12 cores share 24GB of memory. Computations were done on a 64-bit
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Linux operating system. All of the MIP and LP models, including the set-cover problems, were
solved using CPLEX v12 Parallel MIP Optimizer with 12 parallel threads and default settings. The
binary search algorithm was programmed in Java using CPLEX Concert technology.

Table 1 describes the datasets used in the experimentation. These datasets, taken from the
facility location literature, vary in size (49-818 nodes), distance metric used (e.g., Euclidean, great
circle, etc.), and whether demand weights and facility location costs are homogeneous or non-
homogeneous. Column 2 shows the number of nodes in the dataset. Columns 3 and 4 indicate
whether the demand weights and location costs are homogeneous (H) or non-homogeneous (NH).
When a dataset has demand weights, then ¢;; is the weighted distance; otherwise it is the unweighted
distance. Some of the datasets are based on geographical data and some are not. Column 6 indicates

which distance metric is used: Euclidean, Great Circle, or road distances measured from real data.

Table 1: Datasets used in experimentation

Name |Z] =]J| Demand Location Source of data Distance Ref.
weights costs measure
(1) (2) (3) 4) ) (6) (7)
d49 49 NH NH 49 US state capitals  Great circle Daskin [§]
and Washington,
D.C.
ds8 88 NH NH cities in US Great circle 8]
d150 150 NH NH cities in US Great circle 8]
swh5 55 NH 1.0 population centers Euclidean Swain [36]
in Washington, D.C.
lor100 100 NH 1.0 population centers Road Lorena and Senne
in San Jose Dos [19]

Campos, Brazil

(SJDC)
lon150 150 NH 1.0 population centers Road Alp et al. [2]
in London, Ontario
lor200 200 NH 1.0 SJDC Road [19]
lor300a 300 NH 1.0 SIDC Road [19]
lord02a 402 NH 1.0 SJDC Road [19]
lor818 818 H 1.0 SJDC Road [19]
rl1323 1323 H 1.0 drilling problem Euclidean Reinelt [28]
TSP

Table 2 gives a list of all of the parameters that were varied in our experimentation. First, the
budget (b) for a particular instance is a percentage of the cost of locating every facility. Therefore,
letting B be the budget multiplier, the budget (b) equals [B>",; fi]. Second, the cost of hardening
a facility located at 7 is a multiple of the cost of locating a facility at ¢. That is, g; = H f;, where H

17



is the hardening cost multiplier. The number of facility disruptions, r, was also varied. To facilitate
comparison across datasets, r = 1 and r = 2 were considered for all datasets. We also considered

the number of disruptions to be a percentage of the number of facility locations.

Table 2: Parameter values for experiments

Parameter Description Values used
1Z| number of facility locations depends on dataset
|J| number of demand points depends on dataset
B budget multiplier 0.1,0.2,0.3
H hardening cost multiplier 0.1,0.25,0.5,1
r number of facility disruptions 1,2,[0.05B|Z|],[0.1B|Z|],[0.15B|Z|]

5.1 Multiobjective Analysis: Pre-Disruption Radius vs. Post-Disruption
Radius

As discussed in Section 3.3, a decision-maker may be interested in the tradeoff between the pre-
disruption radius and the post-disruption radius. In this section, this tradeoff is analyzed from
two perspectives. First, the Pareto-efficient set is displayed in Section 5.1.1. Second, Section 5.1.2
addresses the question: If the post-disruption radius is optimized in isolation, what is the effect
on the pre-disruption radius, and vice versa? Finally, the computation time for the multi-objective

algorithm is reported in Section 5.1.3.

5.1.1 Pareto-Efficient Set

Figure 4 shows Pareto-efficient sets for the pre-disruption and post-disruption radii for several
instances of the d49 and lon150 datasets with the cost of hardening a facility equal to the cost of
locating a facility (e.g., g; = f;). Each Pareto set was generated using Algorithm 1. The point in the
southwest corner of the plot is the solution for zero interdictions; thus, the pre- and post-disruption

radii are equal for this point.

Two main observations can be made from Figure 4.

1. Tradeoff ratio. The plots become steeper as the post-disruption radius decreases in Figures 4b,
4c, and 4d. This indicates that as the post-disruption decreases, the tradeoff ratio (i.e., the
marginal increase in the pre-disruption radius per unit decrease in the post-disruption radius)
increases. On the other hand, for larger values of the post-disruption radius, the tradeoff

ratio is smaller. This indicates that significant decreases in the post-disruption radius can
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Figure 4: PreDR vs. PostDR: Pareto efficient sets for several problem instances

be attained with small increases in the pre-disruption radius, a result that is consistent with
Snyder and Daskin [34].

2. Flat regions. Most of the plots with more interdictions (r = 2,3) have more flat regions in
which the pre-disruption radius stays constant as the post-disruption radius decreases (e.g.,
d49, B = 0.2, r = 3). Thus, it is important for a decision-maker to be able to view the
Pareto-efficient set, especially when the number of interdictions (r) is large (> 2). For, if the
decision-maker optimized the pre-disruption radius subject to an arbitrary constraint on the
post-disruption radius, they may identify a non-Pareto solution, i.e., a solution on the flat
region. Such a solution is undesirable because the post-disruption radius can be decreased

without increasing the pre-disruption radius.
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5.1.2 Relative Objective Function Increase for Only Considering a Single Objective

In this section we examine the penalty incurred for optimizing either the pre- or post-disruption
radius in isolation, rather than using a multi-objective approach. For example, if the pre-disruption
radius is optimized in isolation, the post-disruption radius may be much higher than its optimal
value. We analyzed this penalty by recording the relative objective function increases for optimizing
either of these two objectives in isolation.

For our analysis we used two models to solve various problem instances: the integrated MFLHP
model and the b-center model, which is the budget-constrained version of the classic p-center problem
[12] and minimizes the pre-disruption radius. For each model, we recorded two values: the post-
disruption radius (PostDR) and the pre-disruption radius (PreDR). We then used these values to
compute two types of relative objective function increases. The Type I relative objective function
increase occurs when the decision-maker plans for a disruption to occur (e.g., optimizes the post-
disruption radius) and yet no disruption occurs. Type II occurs when the decision-maker does not
plan for a disruption and yet a disruption occurs. (These metrics are analogous to Type I and II
errors in hypothesis testing.) Let X Y(f,) be the optimal location and hardening solution generated
from the integrated MFLHP model, and let fo)(XY;)) and f()(XY(})) be the pre-disruption and
post-disruption radii, respectively, for this solution. Let X(*o) be the optimal location solution
generated by the b-center problem, and let f(g) (X (*0)) and fiy)(X (*0)) be the pre-disruption and post-
disruption radii, respectively, for this solution. The type I relative objective function increase is

(PreDR | disruptions) — (PreDR | no disruption)  f)(XY{})) — fio)(X(p)

. . = ” , (10)
(PreDR | no disruption) fo)(X{y))

and the type II relative objective function increase is

(PostDR. | no disruption) — (PostDR | disruptions) fo (X(*())) — fy(X Y(’;))

(PostDR | disruptions) B fo (XY()

Table 3 shows the type I and type II relative objective function increases for instances of the d49

(11)

and swbb datasets. The table shows that for the d49 dataset, the average Type I relative objective
function increase was much lower than the average Type II relative objective function increase.
Conversely, the opposite behavior occurred for the swb5 dataset. It is unclear why the behavior
for the d49 dataset is different because two other datasets also had the same behavior as the swb5
dataset: lor100 (Avg. Type I = 3.55, Avg. Type II = 2.23) and lon150 (Avg. Type I = 6.85, Avg.
Type 11 = 2.73).
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Table 3: Relative objective function increases associated with optimizing only pre-disruption radius
and post-disruption radius, respectively

(a) d49 dataset (b) swb5 dataset

No. B H r Typel Typell No. b H r Typel Typell
102 025 1 0.26 5.03 1 11 025 1 041 1.21
2 02 025 2 026 10.84 2 11 025 2 041 2.13
3 02 1 1 073 3.20 3 11 1 1 294 0.79
4 02 1 2 073 7.24 4 11 1 2 932 1.46
5 03 025 1 0.27 8.60 5 16 025 1 4.72 2.29
6 03 025 2 027 12.51 6 16 025 2 4.72 2.47
7 03 025 3 027 18.36 7 16 025 3 4.72 4.49
g8 03 1 1 119 4.82 § 16 1 1 0.79 1.10
9 03 1 2 119 7.20 9 16 1 2 0.79 1.21
10 03 1 3 1.19 10.74 10 16 1 3 0.79 2.50
Average 0.64 8.85 Average 2.96 1.97

5.1.3 Computational Times

The single-objective binary-search algorithm, described in Section 3.2, was tested over a set of
datasets and problem instances, the largest being the rl1323 dataset. The results showed that the
instances solved in a reasonable amount of time (see Appendix B). In fact, the run time of the
algorithm for most of the rl1323 instances was between 412 and 3389 seconds.

Experimental results also showed that the bi-objective instances solved in a reasonable amount
of time for small- to medium-sized datasets (see Appendix C) even though the entire Pareto-efficient
frontier must be computed. For problem instances with up to nodes, the run time was never more
than 5.8 hours. However, some instances of larger datasets (300-818 nodes) did not solve within 24

hours.

5.2 Benefit of Hardening

In this section we measure the benefit of considering facility hardening when locating facilities
subject to disruptions. We measure this benefit using two objectives: the pre-disruption radius and
the post-disruption radius. The most interesting finding in our results is that while considering
facility hardening in a model did produce solutions that have a lower post-disruption radius, it did
not affect the pre-disruption radius.

To measure the benefit of hardening, we compare the integrated MFLHP model, which includes
facility hardening (MFLHP), with the location-only-with-disruptions (LOWD) problem, which does
not include hardening. The LOWD problem locates facilities subject to a budget (b) in order to
minimize the post-disruption radius. To solve the LOWD, a modification of the binary search

algorithm for the MFLHP can be used; this modified algorithm uses the multi-level location set-
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covering model [4] as its auxiliary sub-problem (see Medal et al. [22]). The binary search algorithm
for the LOWD can also be used to generate Pareto-efficient sets for the pre-disruption and post-
disruption radii by using an algorithm similar to Algorithm 1 (see Medal et al. [22]). In the remainder
of this section we compare the MFLHP to the LOWD method based on the pre-disruption radius
vs. post-disruption radius Pareto sets that they produce.

Figure 5 displays the Pareto sets for the LOWD and MFLHP methods for the unweighted d49
dataset and the lon150 dataset with different values of the budget (b), number of interdictions (),
and hardening cost multiplier (H).

= w0l . | = N - LOWD
g 5 .
= = 600 - 1 MFLHP, H = 0.1
= ;- £ MFLHP, H = 0.25
S 450 | y =
& 1 ) 2 A MFLHP, H = 0.5
= - = 500 | . .
S o g | S B MFLHP, H =1.0
2 AR =2 S b -¢- MFLHP, H = 2.
= 400 ‘Ah | = | By ' : 0
3 K -4 (; ,,,,,,,,, é I - o ,
: e e egra
[aB \\-l‘ [ ! \\./\

35 | | A — | | | | | [

"400 600 800 1,000 ﬂq‘400 600 800 1,000 1,200 1,400 1,600

(a) Daskin 49-node dataset, B = 0.2, = 2

Post-disruption radius (U)

Post-disruption radius (U)

(b) Daskin 49-node dataset, B =0.2,r =4

\ \
I 1 [ ‘ Al
5500 . 800 0 Lown
= . S MFLHP, H = 0.1
23,000 |- ] 23,000 ]
£ 3 MFLHP, H = 0.25
8 g - MFLHP, H = 0.5
52,500 8 52,500 || i MFLHP, H = 1.0
2 2 ~¢- MFLHP, H = 2.0
£ 2 ;
ézooo 8 EZOOO a
2 g
A A ' .; - - .F
1,50

(c¢) London 150-node dataset (lonl50), B =

0.2,r =2

‘2,000 3,000 4,000 5,000 6,000
Post-disruption radius (U"))

17507 I I I I
Oj%qb,(]OO 4,000 6,000 8,000

Post-disruption radius (U)

(d) London 150-node dataset (lonl50), B =0.2,r =4

Figure 5: Pre-disruption radius vs. post-disruption radius for MFLHP and LOWD methods

Several interesting observations can be made from Figure 5.

1. The tradeoff ratio increases as the hardening cost multiplier (H) increases. This is because
when hardening is cheap, the post-disruption radius can be reduced by hardening more facil-

ities, which does not increase the pre-disruption radius. However, when the hardening cost is
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high, the budget does not allow more facilities to be hardened; thus, facilities must be located

differently, which increases the pre-disruption radius.

2. The Pareto sets become further apart as the post-disruption radius (U() decreases: when
the post-disruption radius is large (because the pre-disruption radius is required to be small),
hardening is not as beneficial, and the MFLHP solution will be similar to the LOWD solution.
However, when the post-disruption radius is required to be small, hardening is more beneficial
and the MFLHP will produce solutions with a lower post-disruption radius than the LOWD

model.

3. As the hardening costs increase (especially when H > 1), the MFLHP Pareto sets approach
the LOWD sets. This indicates that the integrated location-hardening model is most likely to
give a significantly better solution than a location-only model when the hardening costs are

less than the location costs.

Table 4 shows the number of facilities located and hardened for each of the Pareto points for Figures
5a and bb; the Pareto points are listed right to left. The results support observation 3 above: when
the hardening costs increase the number of hardened facilities decreases. In addition, more facilities

are hardened under high hardening costs (H > 1) when there are more facility failures.

Table 4: Number of facilities located and hardened for each Pareto point in Figures 5a and 5b

r H Number located and (hardened)

2 0.1 11 (4); 10 (10)

2 0.25 11 (2); 10 (5); 10 (5) 9 (7), 9 (8): 9 (9)

2 0.5 11 (1); 10 (3); 11 (2); 10 (2); 10 (3); 9 (5); 8 (7)

2 1.0 11 (0); 11 (0); 11 (0); 10 (1); 1 ( ); 10 (1); 10 (2); 7 (5); 6 (6)
2 20 11 (0); 11 (0); 11 (0); 12 (0); 12 (0); 12 (0); 12 (0); 11 (1)

4 01 11 (4); 0( 0)

4 0.25 11 (2); 10 (5); 10 (5); 9 (7); 9 (8); 9 (9)

105 11(1); 10 (3): 10 (3): 9 (4): 9 (4): 8 (7

£OL0 1011 (19 (29 (2):8 (3): 9 (3); 8 (3): 8 (4); 7 (5); 6 (6)
4 20 11(0);10 (1); 10 (1);8 (2); 7(3); 6 (3); 7 (3); 7 (3); 5 (4); 5 (3); 4 (4)

6 Summary and Future Work

6.1 Summary

In this article we studied the integration of facility location and hardening decisions. In order to

perform our analysis, we developed an efficient method to model and solve the integrated minimax
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facility location-hardening problem (MFLHP) model and used our approach to discover new insights
about location and hardening. To model the problem, we first demonstrated that, because of the
problem’s structure, the three-stage location-interdiction-distribution problem can be modeled as
a single-stage problem. We then formulated this single-stage problem as a mixed-integer program
(MIP). Rather than solving the MIP directly, we decomposed it into set-cover-like auxiliary problems
and used a binary search algorithm to solve it.

Experiments with the integrated MFLHP model provided interesting decision-making insights.
The Pareto-efficient sets for the pre-disruption radius (PreDR) and post-disruption radius (PostDR)
objectives showed that significant decreases in the post-disruption radius can be attained with small
increases in the pre-disruption radius. Further experimental results showed that the average relative
objective function increase for only optimizing the PreDR was higher than the relative increase for
only optimizing the PostDR for all of the datasets used except one. Finally, the results in Section 5.2
indicated that an increased preference towards the PostDR objective should lead the decision-maker
to harden more facilities when hardening cost is less than the location cost.

The experimental results also showed that the integrated method is attractive from a computa-
tional standpoint: the integrated model solved problems with up to 1323 nodes on a 12-core machine
within 3389 seconds. The bi-objective solution algorithm is able to solve small- to medium-sized
datasets within a reasonable amount of time: problem instances with up to 200 nodes were solved

to optimality within 5.8 hours.

6.2 Future Work

Several assumptions in our model would be useful and interesting to relax. First, in our model
a hardened facility cannot fail, and a facility is either hardened or not. In reality, a facility can
never be completely immune to disruptions, and investing more protection resources into a facility
makes it more resilient. Second, in our model the facilities are uncapacitated. This may be a
good approximation in some contexts, but in others it may be important to model facility capacity.
Third, we do not include the facility failure duration in our model. In reality, facilities may have
different recovery times, which could affect the location and hardening decisions (see Losada et al.

[20]).
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Model for Minimizing Total Distance Subject to a Ra-

dius Constraint

The following model minimizes the pre-disruption total distance subject to the constraints that 1)

the pre-disruption radius must be at most U(®) and 2) the post-disruption radius must be at most

U

. Redefine Y; to equal 1 if a facility at ¢ is hardened and zero otherwise. Let V;; be a variable

that is 1 if demand point j is assigned to the facility located at ¢ as when a disruption does not
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occur, e.g., the pre-disruption assignment. Then, the model is as follows:

€L jeJ

st » Vy=1 VjeJ (A.1Db)
i€l
Vij<Xi Viel,jeJ (A.lc)

Y Xiz1 VjedJ, (A.1d)
i:p;; <U(0)
(r+1) Y Yi+ Y X;>=r+l VjeJ (A.le)
i, <U™) i, <U™)

Z fiXi + ZgiY:i <b (A.1f)
€L €L
V<X, Viel (A.1g)
X;,Y; €{0,1} VieZ (A.1h)
Vi;€{0,1} VieZI jeJ (A.1i)

The objective (A.la) minimizes the sum of the distances between demand points and their
assigned facilities. Every demand point must be assigned to one facility (A.1b) and that facility
must be located (A.lc). Constraints (A.1d) and (A.le) ensure that the pre-disruption and post-
disruption radii are no more than U® and U, respectively. Finally, the model includes a budget
constraint (A.1f), a constraint allowing a variable to be hardened only if it is located (A.1g), and
variable-type constraints ((A.1h and (A.1i)).

When r = 1, the hardening variables, Y;, are not needed and Constraints (A.le) can be removed

because they become identical to Constraints (A.1d).

B Computation Times for the Binary Search Algorithm

Another important consideration in deciding whether the integrated method is preferred over other
methods is the computation time required to solve problem instances. Specifically, it is important
to consider these two questions: 1) is the integrated method able to solve problem instances that
would be of interest to decision makers? and 2) is the integrated method able to solve these problem
instances within an amount of time that is satisfactory to the decision makers? The experimental
results in this section show that the answer to both of these two questions is yes.

To obtain the run times analyzed in this section, we solved the integrated MFLHP model for
several problem instances of the rl1323 dataset, which is motivated by a circuit board drilling
problem [28]. The instances were obtained from the rl1323 dataset by varying the parameters b, g;,

and r. The instances were solved using the binary search algorithm described in Section 3.2.
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In a preliminary set of experiments, the run time for the binary search algorithm was several
orders of magnitude smaller than the run time for the MIP model. Thus, we do not report results
for the MIP model.

Experimental results for the binary search algorithm computational performance are shown in
Table 5. Each row contains the results for an instance of the r11323 dataset, the largest dataset for
which the binary search algorithm was able to solve all instances to optimality. Columns (5)—(11)
show the initial percentage gap between the lower (5) and upper bound (6) and the final optimal
solution, the initial total proportional gap (7), the number of times the auxiliary problem is solved
to optimality (8), the presolve run time in which the initial bounds are obtained (9), the run time

of the binary search algorithm (10), and the total run time (11).

Table 5: Run times (s) of binary search algorithm for r11323 dataset

Initial gaps Run time (s)
No. b H r LB UB LB+UB # solved to opt. Pre-solve Solve Total
1) (2 B &) ((6) (6 (7) (8) (9) (10)  (11)
1 132 025 1 0.22 0.09 0.31 10 1110 283 1393
2 132 025 2 0.16 0.09 0.25 9 590 228 818
3 132 025 7 0.08 0.09 0.17 9 525 228 754
4 132 0.25 14 0.07 0.09 0.15 9 503 224 726
5 132 1 1 021 0.13 0.34 10 393 203 596
6 132 1 2 017 0.13 0.30 11 367 196 563
70132 1 7 0.08 0.13 0.20 10 353 152 505
8§ 132 1 14 0.05 0.13 0.18 10 253 159 412
9 264 025 1 0.26 0.21 0.47 9 2502 887 3389
10 264 0.25 2 020 0.21 0.41 9 2199 781 2980
11 264 0.25 14 0.06 0.07 0.13 7 1436 600 2036
12 264 0.25 27 0.04 0.07 0.11 7 1307 580 1887
13 264 1 1 023 0.24 0.48 10 1110 374 1483
14 264 1 2 018 0.24 0.42 9 1292 366 1659
15 264 1 14 0.04 0.10 0.14 8 592 288 880
16 264 1 27 0.02 0.10 0.12 8 721 307 1028

Table 5 indicates that the binary search algorithm can solve large problems in a reasonable
amount of time. The lower bound percentage gaps are usually good, ranging from 2 to 26%. The
heuristic and initial bounds are effective in reducing the number of times the auxiliary problem is
solved to optimality. In the worst case performance of the binary search algorithm, 21 auxiliary
problems must be solved to optimality; however, these results show that the auxiliary problem
needed to be solved to optimality between 7 and 11 times. Most of the problems solve in a reasonable

amount of time, from 412 to 3389 seconds.
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As Table 6 shows, the average run times over a set of problem instances for the remaining
datasets used in this paper are mostly small, increasing with the number of nodes in the dataset.

However, the lor818 dataset takes much longer than the others.

Table 6: Average run times (s) for binary search algorithm

Dataset Average run time (s)

d49 0.18
d88 0.44
d150 0.60
swbHb 0.23
lor100 0.52
lon150 0.65
lor200 1.37
lor300a 4.24
lor402a 12.25
lor818 166.8

C Computation Times for the Bi-Objective Algorithm

Table 7 contains run times for Algorithm 1 for various problem instances for the d49, swb5, d88,
d150, and lon150 datasets. These run times include the time to optimize the total distance as a
secondary objective for each point in the Pareto set. As the table shows, the main factors that

influence run time are the number of nodes and the hardening cost multiplier.

Table 8 shows the run times for several larger problem instances. The run time is again influenced
by the number of nodes and the hardening cost multiplier. The table also shows that the run time
for these larger datasets is orders of magnitude larger than the run time of the smaller datasets

shown in Table 7. Indeed, some of the instances did not complete within the 24 hour time limit.
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Table 7: Run time for pre-disruption radius vs. post-disruption radius algorithm (Algorithm 1)

Dataset Budget, b Interdictions, r Hardening Run time

cost
multiplier, H
449 10 2 0.25 6(s)
d49 10 2 1 14(s)
d49 15 3 0.25 7(s)
d49 15 3 | 16(s)
w55 11 2 0.25 0.8(s)
swhb 11 2 1 2.9(s)
swh5 11 3 0.25 0.8(s)
swbb 11 3 1 2.4(s)
sw55 17 3 0.25 1.3(s)
swbHb 17 3 1 2.4(s)
w55 17 4 0.25 1.2(s)
swhb 17 4 1 2.3(s)
dss 18 3 0.25 10(s)
dss 18 3 1 16(s)
dss 18 4 0.25 8(s)
dss 18 4 1 22(s)
dss 27 5 0.25 10(s)
dss 27 5 1 25(s)
dss 27 6 0.25 10(s)
dss 27 6 1 23(s)
d150 30 5 0.25 14(s)
d150 30 5 1 61(s)
d150 30 6 0.25 12(s)
d150 30 6 1 42(s)
d150 45 7 0.25 12(s)
d150 45 7 | 28(s)
d150 45 9 0.25 11(s)
d150 45 9 1 61(s)
lon150 30 5 0.25 27(s)
lon150 30 5 1 68(s)
lon150 30 6 0.25 25(s)
lon150 30 6 1 71(s)
lon150 45 7 0.25 50(s)
lon150 45 7 1 57(s)
lon150 45 9 0.25 20(s)
lon150 45 9 | 48(s)
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Table 8: Run time for pre-disruption radius vs. post-disruption radius algorithm (Algorithm 1)

Dataset Budget, b Interdictions, r Hardening Run time

cost
multiplier, H

lor200 40 6 0.25 534(s)
lor200 40 6 1 5.8(h)
lor200 40 8 0.25 451(s)
lor200 40 8 1 1.4(h)
lor200 60 9 0.25 165(s)
lor200 60 9 1 1.8(h)
lor200 60 12 0.25 123(s)
lor200 60 12 1 3131(s)
lor300 60 9 0.25 1.5(h)
lor300 60 9 1 >24(h)
lor300 60 12 0.25 1766(s)
lor300 60 12 1 23.1(h)
lor300 90 14 0.25 742(s)
lor300 90 14 1 8.8(h)
lor300 90 18 0.25 632(s)
lor300 90 18 1 1.9(h)
lor402 81 13 0.25 7.8(h)
lor402 81 13 1 389(s)
lor402 81 17 0.25 2.5(h)
lor402 81 17 1 >24(h)
lor402 121 19 0.25 101(s)
lor402 121 19 1 2(h)
lor402 121 25 0.25 1850(s)
lor402 121 25 1 12.2(h)
lor818 164 25 0.25 >24(h)
lor818 164 25 1 >24(h)
lor818 164 33 0.25 >24(h)
lor818 164 33 1 >24(h)
lor818 246 37 0.25 1.1(h)
lor818 246 37 1 1067(s)
lor818 246 50 0.25 4.7(h
lor818 246 50 1 >24(h)
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