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Abstract

We study a new facility protection problem in which one must allocate scarce protection
resources to a set of facilities given that allocating resources to a facility only has a proba-
bilistic effect on the facility’s post-disruption capacity. This study seeks to test three common
assumptions made in the literature on modeling infrastructure systems subject to disruptions:
1) perfect protection, e.g., protecting an element makes it fail-proof, 2) binary protection, i.e., an
element is either fully protected or unprotected, and 3) binary state, i.e., disrupted elements are
fully operational or non-operational. We model this facility protection problem as a two-stage
stochastic program with endogenous uncertainty. Because this stochastic program is non-convex
we present a greedy algorithm and show that it has a worst-case performance of 0.63. However,
empirical results indicate that the average performance is much better. In addition, experimen-
tal results indicate that the mean-value version of this model, in which parameters are set to
their mean values, performs close to optimal. Results also indicate that the perfect and binary
protection assumptions together significantly affect the performance of a model. On the other

hand, the binary state assumption was found to have a smaller effect.
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1 Introduction

This paper examines the problem of allocating scare protection resources amongst a set of facilities
to mitigate the system-wide consequences of disruptions, extending previous facility protection
optimization models by adding several types of model fidelity: (1) Rather than assuming a facility
is either hardened or not hardened, we model multi-level protection, in which a facility’s protection
level increases as more protection resources are allocated to the facility. (2) Rather than assuming a
protected facility never fails and an unprotected facility always fails, we model imperfect protection,
in which the facility’s likelihood of failure depends on the level of protection. (3) Rather than

assuming that a facility is either fully operational or non-operational, we model multi-state capacity,



in which a facility’s post-disruption capacity state depends probabilistically on its protection level.

We call this problem the probabilistic facility protection problem (PFPP).

1.1 Background and Motivation

Recent history shows that disruptions do occur in infrastructure networks and that these disruptions
can have large system-wide consequences. On March 11, 2011, a tsunami smashed into Japan’s
northeastern coast, resulting in the loss of many lives, the damage of a large amount of property,
and a near nuclear disaster. The destruction caused by the tsunami affected the supply chains of
many companies operating in Japan. At Renesas Electronics Corporation sensitive equipment was
damaged, bringing production to a halt. Unfortunately, several Japanese automakers used Renesas
as their only source for microchip controllers, causing their supply chains to have a vulnerable link.
After this link was severed, some automakers were forced to halt car production for up to six months
due to lack of supply (Kim, 2012). Toyota vows to be prepared for the next disruption, asking their
suppliers to either spread production or hold extra stock. “Our plan is to manage risk while at the
same time reducing costs,” said vice president Shinichi Sasaki (Kim, 2012).

To help companies like Toyota mitigate against disruptions to their distribution networks, re-
searchers have developed models for allocating resources among networks to minimize the risk to the
overall network. In addition to private companies, government agencies such as the United States
Department of Homeland Security (DHS) Office of Infrastructure Protection are also interested
in allocating resources to protect infrastructure networks. The infrastructure protection problem
seeks to allocate scarce resources amongst the elements of an infrastructure network (e.g., bridges,

buildings, ports, etc.) in order to hedge against the network-wide consequences of disruptions.

1.2 Related Literature

While many have studied the facility protection problem, there are three important limitations of
the existing research. (1) Most models assume binary protection, meaning that a facility is either
protected or not. (2) Most models assume perfect protection, meaning that a protected facility
cannot fail. (3) Most models assume that a disruption has a perfect impact on an element, causing
it to fail or leaving it unaffected. While these assumptions have helped researchers develop tractable

models and discover interesting findings, they may not be appropriate for all contexts. In reality,



protection is multi-level and imperfect, and a disruption may have an imperfect effect, leaving a
facility only partially degraded. Thus, an important question remains in this area of research: how
do these assumptions affect the quality of solutions produced by a model? In addition, because
most of the modeling approaches for facility protection rely on these assumptions, it is not clear
how to relax these assumptions without substantial loss of model tractability.

The goal of this paper is to relax these assumptions while still providing a tractable solution
approach. Toward this end, we model a facility protection problem with imperfect, multi-level
protection and imperfect disruptions, namely the PFPP. The broader goal is to increase what is
known about the implications of various assumptions on infrastructure protection models.

In the past decade there has been an increase of research on infrastructure protection modeling.
One of the earliest papers, written by Church and Scaparra (2007), studied the problem of protect-
ing facilities in order to mitigate against the worst-case disruption scenario, which consists of the
failure of r facilities. This model is appropriate for protecting against an attacker with a known
amount of resources. They show that protecting facilities can produce a significant reduction in
the consequences due to disruptions. The authors later developed more advanced solution methods
for the problem (Scaparra and Church, 2008b,a) and others have made various extensions such a
stochastic number of facility failures (Liberatore et al., 2011) and a knapsack budget constraint on
the attacker’s budget (Aksen et al., 2010). In all of these studies, the models assume binary, perfect
protection and perfect disruptions. In addition, each of these studies assume that facilities have
infinite capacity. Scaparra and Church (2012) modeled facilities as having two capacity states, non-
operational with zero capacity and fully operational with finite capacity, and found that explicitly
modeling capacity does improve solution quality. However, an important question remains: Is it
important to include multiple, i.e., more than two, levels of capacity?

Others have studied the problem of protecting network elements, i.e., nodes and arcs, against
the worst-case disruption scenario. Bier et al. (2007) studied the problem of protecting a power grid
against attacks. Yao et al. (2007) studied a similar problem but apply a more advanced solution
procedure. ? modeled the protection of networks that are subject to an attack by an attacker that
uses heuristics to allocate resources. Cappanera and Scaparra (2011) presented an approach for
protecting a network so as to minimize the shortest path length after an attack. All of these models

assume binary, perfect protection and perfect disruptions.



Researchers have also studied infrastructure protection against random disruptions, starting with
a tutorial paper by Snyder et al. (2006), who presented a model for protecting facilities. O’Hanley
et al. (2007) studied the problem of protecting natural reserve sites against random failures. Lim
et al. (2010) presented an extension of the warehouse location problem in which the decision-maker
chooses between locating unreliable facilities and locating perfectly reliable, i.e., hardened backup
facilities, at a higher cost. Liu et al. (2009) model the protection of bridges with the objective of
minimizing the expected total travel time. These models also assume binary, perfect protection and
perfect disruptions.

Some studies have relaxed Assumptions 1 (binary protection) and 2 (perfect protection):

Assumptions 1 and 2 Du and Peeta (2014) extended the work of Peeta et al. (2010) by allow-
ing retrofitting decisions to be represented by a continuous variable between zero and one.
Ramirez-Marquez et al. (2009) also included multi-level protection in a network protection
study. They employed a sampling-based evolutionary algorithm to compute solutions. Losada
et al. (2012) also included multi-level protection in a facility interdiction problem where mul-
tiple resource units can be allocated to a facility. Zhu et al. (2013) added a protection layer to
the model by Losada et al. (2012). Specifically, the probability that a particular facility fails

is a function of the amount of resources allocated by the protector and the interdictor.

Assumption 2 Peeta et al. (2010) modeled imperfect protection for a problem in which a decision-
maker invests resources to retrofit unreliable road segments in a highway network in order to
minimize the expected post-failure transportation cost. A segment’s failure probability is low

if it is retrofitted and high if it is not.

The present paper is the to first to relax Assumption 1 (single-level protection), Assumption 2
(perfect protection), and Assumption 3 (binary-state capacity) in combination. A benefit of relaxing
these three in combination is that is allows one to analyze the interaction between these assumptions.

When modeling the failure of capacitated facilities or network elements, a scenario-based stochas-
tic programming formulation is usually the best option (?Snyder et al., 2006; ?7; Peng et al., 2011;
Peeta et al., 2010). However, using stochastic programming is problematic if imperfect protection is
modeled because imperfect protection implies that the resource allocation decision affects the prob-

ability of the scenarios. This is in contrast with typical stochastic programming models in which



the probability distribution governing the scenarios is known (Birge and Louveaux, 2011). However,
there is a small body of research on stochastic programming with decision-dependent uncertainty
(DDU), in which uncertainty depends on the decision variables. Adding DDU to a stochastic pro-
gram makes it significantly more difficult to solve (Jonsbraaten et al., 1998; Shapiro et al., 2009),
partly because the resulting program is usually non-convex (Shapiro et al., 2009). Despite its dif-
ficulties, there has been some research on stochastic programming with DDU. According to Goel
and Grossmann (2006), research on DDU can be classified according to the effect of the first-stage
decisions: (1) first-stage decisions affect the information that the decision-maker has about the un-
certainty (Jonsbraaten et al., 1998; Goel and Grossmann, 2006) and (2) first-stage decisions affect
the actual probabilities. Only a few have studied category (2), which is the category studied in this
paper.

Peeta et al. (2010) and Du and Peeta (2014), who studied a network protection problem as a
stochastic program with DDU of category (2), are the papers most closely related to ours in terms of
the methodology used. In Peeta et al. (2010) the objective function was approximated by a Taylor
series expansion, which resolved the non-convexity caused by DDU. This approximate model is
then solved using sample average approximation (Kleywegt et al., 2001). Because they approximate
the objective function, their approach does not guarantee optimality or provide a performance
guarantee of their problem. Du and Peeta (2014) use an iterative heuristic algorithm in conjunction
with Monte Carlo simulation. Our work differs from Peeta et al. (2010) and Du and Peeta (2014)
in that, rather than approximating the objective function or using a heuristic approach, we provide
an approximate algorithm with a performance guarantee. In addition, we also present an exact
solution approach, based on a reformulation that resolves the non-convexity caused by the DDU.

Finally, they do not consider multiple levels of capacity as we do in this paper.

1.3 Contributions

The contributions of this paper are as follows: (1) We demonstrate that the PFPP can be modeled as
a two-stage stochastic program with decision-depend uncertainty (DDU). (2) We show that PFPP is
submodular under certain assumptions. (3) We propose a simple greedy algorithm that, due to the
submodularity property, has a worst case bound of 1 —e~! ~ 0.63. (4) We describe a reformulation

that resolves the non-convexity of the DD U-formulation, resulting in a mixed-integer linear program.



(5) We report the results of computational experiments in which the greedy algorithm performed
much better than the worst case bound. (6) We report findings that indicate that the mean-value
version of the problem produces near-optimal solutions. (7) We also use our model to test the effect

that Assumptions 1-3 have on solution quality.

2 Problem Description and Model

In the probabilistic facility protection problem (PFPP) a set of spatially-located facilities, which
are exposed to hazards, must together serve a set spatially-located demand points despite the fact
that hazards may degrade the capacity of facilities to serve demand points. To mitigate against
the risk of hazards, a planner allocates protection resources to facilities, constrained by a fixed
budget. Although the planner does not know the severity or locations of the disruptions, he does
have complete information about their probabilities.

The hazards are due to extreme weather events, which are governed by some known distribution.
After a hazard occurs, a facility’s post-hazard capacity state is a probabilistic function of 1) the
severity of the hazard and 2) the level of protection at the facility. Other researchers have cited
that modeling stochasticity in hazard outcomes as well as post-hazard capacities is important (Du
and Peeta, 2014, Section 1).

After each facility’s post-hazard capacity state is known, the set of facilities serve the set of
demand points. We consider a disaster response context in which the facilities represent distribution
centers containing prepositioned goods; in the event of a disaster these goods are transported to
the disaster site. Because of the urgent nature of disaster response, the delivery time is critical.
Thus, when a disruption causes the capacity of facilities to degrade, recipients have to wait longer

to receive relief goods because they may have to come from a farther location.

2.1 Mathematical Model

We model the PFPP as a two-stage stochastic program with decision-dependent uncertainty. Let
J = {1,...,J} be a set of facility indices, and let first-stage variables y = (y;)jes € ¥ C R’
represent the amount of protection allocated to each facility j € J. The budget for protection

is denoted as b. The planner has perfect information about the efficacy of his or her protection



allocation decisions, knowing the functional relationship between the amount of protection allocated

to a facility and the probability distribution for that facility’s post-disruption capacity state.

2.1.1 Uncertainty

The random hazards are governed by a random vector 1/; = (@Zj) je7, whose elements describe the
hazard intensity level that each facility j is exposed to. For example, if the hazard is a hurricane,
facilities near the center of the storm will be exposed to stronger winds than those further away.
The post-hazard capacity state for each facility is governed by the independent random vector,
a = (dj)jeg, and the element corresponding to a facility j, d;, is conditional upon the hazard

intensity that j is exposed to, 1%-, and the protection allocated to j, y;. Thus, g;(a;j|v;;y;) is the

conditional probability function of the hazard level random variable for facility j, and

95(a;ly;) = By g5(a;l¥s; y;) (1)

is the probability function.
Disruptions are represented by a finite set of scenarios, 2, with scenario w € 2 defining the
capacity level for each facility j, a¥, as well as the hazard level for each facility, ¢7. The probability

for scenario w is

P (y) = [ ] gi(a e vy)- (2)

jedJ
2.1.2 Second Stage

The second stage of the model is a transportation problem, seeking to transport relief goods to a
disaster site while providing maximum utility to the recipients. The utility that victims receive from
a shipment of goods from facility j to site i is u;;(¢;;(dij)), where ¢;;(-) converts distance to travel
time, and d;; is the distance from 4 to j. For brevity, we abbreviate the utility as u;;. Each site 4
has a demand of e; units. When the total available facility capacity after a disruption is insufficient
to satisfy total customer demand, a dummy facility, indexed J + 1, may satisfy demand at a much

lower utility, u; j41 = w;;(tij(d' max;j{d;;})), where d’ is an arbitrary penalty multiplier. A linear



programming formulation of the transportation problem for scenario w is

J+1
h(a®”) = max. Z Z €ilijTij (3a)
ieT j=1
s.t. Zeia:ij < a;f’ VieJ, (3b)
€L
J+1
Y ay=1 Viel, (3¢)
j=1

The objective of model (3) is to maximize the total weighted utility (3a). The constraints ensure
that: total customer demand allocated to a facility does not exceed that facility’s capacity (3b), all

of the demand is satisfied for each demand point (3c), and the assignment variables are non-negative
(3d).

An important property of this second-stage problem is that it does not depend on the first-stage
decisions; thus, h* = h(a®“) is a model parameter.

2.1.3 Discrete Equivalent Problem

Thus, the two-stage problem is:

max Q(y) = Y P*(y) h(a®). (4)

(S
yey weN

3 Model Properties

As we will show, although (4) is, in general, non-convex, it is submodular under certain assumptions.

3.1 Concavity of Single-Facility Case, Q(y)

As we will show, for the single facility case, Q(y;) is concave if the facility capacity random variable

has a binomial distribution and A(-) is submodular.

Definition 1. Let x, y, and h be vectors in R such that x <y and h > 0. A function f(-) is

submodular if f(x 4+ h) — f(x) > f(y + h) — f(y), where x + h denotes element-wise addition



(Nemhauser et al., 1978).

Let the probability mass function for a binomial random variable with n trials and k successes,
and a success probability of p be by, (p) = (Z)pk(l —p)n k.

First, we will establish that the following expectation is concave on [0, 1] if A(k) is submodular:

Qp) =D h(k)bin(p)- ()
k=0

Shaked (1980) showed that an exponential family probability distribution is convexly parame-
terized, meaning that the expectation of a convex function over an exponential family distribution
is convex in the parameter of the distribution. Rather than modify this result to show that Q(p) is
concave when h(k) is submodular, we provide a proof specific to the binomial distribution. (Noah
Stein at Analog Devices Lyric Labs proved this result for the case in which h(k) is convex. Here we

present a modified version for the concave and submodular case.)
Lemma 1. Q(p) is concave on [0,1] if h(k) is submodular.
Proof. See Appendix A O

Corollary 1. Let f(-) : [0,b] — [0,1] be a non-decreasing concave function. Q(y1) is concave if
the range of ay is {0,1,...,a1}, gi(a1|tr;y1) is binomially distributed with @, trials and success

probability p = f(y1), and h(a1) is submodular.

Proof. See Appendix A O
3.2 Submodularity of General Case, Q(y)
First, we will establish that the following expectation is concave on [0, 1]” if h(k) is submodular:

Qp) =D - > hk) [] bknlp)),

k1=0 k=0 JjeET
where p = (p1,...,pm) is a vector in [0,1]™ and k = (ki, ..., ky,). This result is known for the case

in which the random variables are Bernoulli (Vondrak, 2008).

Theorem 1. Q(p) is submodular if and only if h(k) is submodular.



Proof. See Appendix A O

Corollary 2. Let f;(-) : [0,b] = [0,1] be a non-decreasing concave function for all j € J. Q(y)
is concave if, for all j € J, the range of a; is {0,1,...,a;}, gj(ajhz)j;yj) is binomially distributed

with a; trials and success probability p = f(y;), and h(a) is submodular.
Proof. See Appendix A O

Remark 1. Our second stage problem 3 is submodular because it is a linear program. However,

many integer programs also have this property (Nemhauser et al., 1978).

As the sequel will show, the submodularity of Q(y) implies a constant-factor guarantee for a

greedy algorithm.

4 Solution Methods

4.1 Greedy Algorithm

This section describes a greedy algorithm for PFPP. This greedy algorithm is similar to the one used
by Vondrak (2008) to obtain a relaxation solution to the deterministic submodular maximization
problem.

To obtain a constant-factor performance guarantee of the greedy algorithm we make the following
observations and assumptions. First, Q(y) is monotone, which is straightforward to show. Second,
the set of feasible y forms a uniform matroid. To do this, we discretize the values of y; into K

levels. Thus, the feasible region is

Y={y:) yj<by=0} (6)
JjeJ

The greedy algorithm (shown in Algorithm 1) iteratively adds protection resources to the fa-
cilities with the largest marginal benefit until b resources have been allocated. The main loop of
the algorithm (lines 8 to 10) finds the set of the best b/K facilities according to marginal benefit
and adds 1 unit of protection to each of these facilities, continuing until the budget is exhausted.

Note that the algorithm requires that for a given K the budget (b) should be chosen so that b

10



mod K = 0. If this is not the case, then & (Step 6 of the algorithm) must be rounded down,

causing the algorithm to not use all of the budget.

Algorithm 1 Greedy algorithm for imperfect facility protection.
1 function GREEDY
2 Let e; be a vector with a 1 at position j and Os elsewhere.
3 Let 1x denote a zero vector with 1s in the positions of the elements of the set X.
4 Let X|[k] denote the set of the k largest values of X.
5 Given solution y, the marginal benefit for facility j is

A;Q(y) = ) P(y) [h(a” +ej) — h(a®)]

we

Set b/ = b/K. Start with ¢ = 0, and y(0) = 0.
while t < K do
Set 1(t) = {4, Q(y) : j € THY]
y(t+1) =y(t) + 1
10 t=t+1
11 return y(K)

© o ~N O

For a given problem instance, let y“ be the solution returned by the greedy algorithm (Algorithm
1), and let y?F7 be the optimal solution. Relying on the fact that Q(y) is submodular (corollary

2), the following theorem gives a constant-factor performance guarantee for Algorithm 1.

Corollary 3. Q(y%) > (1 — 1)Q(yorT)

e

Proof. See Appendix A O

Remark 2. Studying a set covering problem, Wolsey (1982) presented a continuous version of Al-
gorithm 1, which is also valid for our problem. We presented a discrete version here so that we can

easily compare it with the mixed-integer stochastic program that we present in the next subsection.

4.2 Two-Stage Stochastic Programming Model

As a complement to the greedy approximation algorithm, we describe an exact procedure in this
section. Because our natural formulation of the PFPP as a two-stage stochastic program with
decision-dependent uncertainty (DDU) (4) is difficult to solve directly (Jonsbraaten et al., 1998;
Shapiro et al., 2009), a series of reformulations are presented, eventually leading to a mixed-integer

linear stochastic program.

11



In this section we first formulate our problem as a non-convex two-stage stochastic program
(§4.2.1) and then reformulate it as a conventional two-stage stochastic mixed-integer linear program
(84.2.2), relying on the assumption that the set of facility capacity conditional random variables
{dj\@E}je 7 are mutually independent. That is, given a particular hazard outcome, the capacity
states of the facilities are independent. This is not a restrictive assumption because it still allows
the hazard levels for each facility to be correlated. This assumption facilitates a “probability chain”
modeling framework (Morton et al., 2007; Losada et al., 2012; O’Hanley et al., 2013) that we use

to linearize the model.

4.2.1 Non-Convex Formulation

First, we discretize the random vectors. Redefine 1,5 = (ﬁjm) jeg,mem as the random hazard vector,
whose elements equal 1 if facility j is exposed to hazard level m and 0 otherwise. The binary random
vector é = (éjg) jegeec, is a vector of facility capacity states where éjg = 1 if facility j is in capacity
state ¢ after the disruptive event and 0 otherwise. Thus, given the realization &, the amount of
capacity for facility j is ), a;¢&;¢, where ajy is the amount of capacity available at facility j when

j is in state £. Thus, the post-disruption transportation problem is represented as

J+1
h(é) = max. Z Z eidijmj (73)
i€Z j=1
s.t. Z €L < Zajgﬁjg VjeJd, (7b)
i€ lel
(3¢)—(3d).

Next, we discretize the allocation decision variables. Let the set K := {0,1,..., K — 1} be a set
of protection allocation levels, indexed by k, and the set £ := {0,1,...,L — 1} be a set of facility
capacity levels indexed by £. Redefine y = (y;r)jes rek as a vector of binary variables, where

y;r = 1 if k resources are allocated to facility j and 0 otherwise. With this redefinition, PFPP can

12



be formulated as the following two-stage stochastic program:

max. Ej [Eé‘ Qz’y[h(é)]} (3a)
st Y yr=1 VjieJ, (8b)
kex
SN kyp <b, (8¢)
JjeJ ke
yjr € {0,1} Vje T, kek. (8d)

Recall that the probability of a scenario w is P (y), which is the likelihood of the realizations &“
and 1 given allocation vector y. Assuming that facilities fail independently given a hazard level

outcome,

Py) =TT DD D Piomn &t vt 9)

JET kek teL meM
where Pjimi = P(&e = 1| @ij =1; y;r = 1) is the probability that element j is in capacity state ¢
when exposed to hazard level m given that k protection resources were allocated to j. For ease of

notation, denote the probability that facility j is in capacity state £ in scenario w as

Pk = Y Piomn St (10)
meM

Hence, (8) can be expressed as the following stochastic programming extensive form:

J+1
max. Z H Z (Z P;’%) Yik Z Z eidijx% (11a)

weNJeT ke \LeLl i€z j=1

s.t. Zem% < Zajgfﬁ VjieJ,we, (11Db)
ieT el
J+1
Zm‘szl VieZ,weQ, (11c)
j=1
r5; >0 VieljeJ,weq, (11d)
(8b)—(8d).

13



Because the objective function (11a) contains product terms involving decision variables, this

formulation is a mixed-integer non-convex stochastic program.

4.2.2 Discretized Reformulation

Because the second-stage problems do not depend on the first-stage decisions, y, we can represent

the optimal second-stage objective value in scenario w as the fixed value h* and reformulate (11) as

max . Z h* H Z <Z Pﬁk) Yik (12a)

weN JET ke \LeLl
st (8b)—(8d).

In Formulation (12), the expected cost is calculated in the objective function (12a) by adding
the probability-weighted transportation costs (i.e., h* [T;c 7 > pex 2oses Pp¥in) over all scenarios;
this is how the expected cost is typically calculated in stochastic programs. However, to remove
the remaining non-linearity in (12), we use a reformulation that calculates the probability-weighted
transportation cost for each scenario using recursive equations, which removes the product [ jeg

By the independent facility failures assumption, we substitute the product

112> Buvi

JjeET keK el
with a recursive expression by using bookkeeping variables to calculate the product of probabilities.
Let z* be a variable that holds the probability-weighted transportation cost for scenario w. Let
Wy, be a bookkeeping variable that holds value of h“ multiplied by the likelihood that facilities
1,...,7 — 1 are in their corresponding capacity states defined by scenario w if k£ units have been

allocated to facility » and zero otherwise. Thus, we want each variable w,, to hold the value

r—1
W T2 D Beewuin.

j=lkeKk teL

To ensure that the value of w,k,, is computed correctly, we use the following recursive equations

14



h* = Z Wiky Yw €, (13)
ke

Z pr—l,z,kwrfl,kw =Wk Vr=2,...,J;we, (14)
kek el

Z Zpﬁgkakw = 2", (15)

ke LeLl
which ensure that z* is equal to the transportation cost for scenario w (h“) times probability of
scenario w (the product of the probabilities that each facility realizes its capacity state) along with

the constraints

Wrkw < Yrk V?"Il,...,J;kEIC;WEQ, (16>

which ensure that w,i, is positive only if k units are allocated to the r*! facility. These recur-
sive equations make our reformulation similar to the network-flow type reformulation employed in
Morton et al. (2007) (see also Losada et al., 2012). O’Hanley et al. (2013) called these recursive

)

equations a “probability chain.” Figure 1 illustrates the probability chain flow network for a sce-
nario w of a problem instance consisting of three facilities. The flow into node 0 is the optimal total
weighted utility for scenario w as computed by (7). The flow variables (w,,,) are shown above the
arcs and the arc weights are shown below. When flow travels through an arc the flow is multiplied
by the arc weight, which is equal to the state probability for the corresponding facility and allocation
level. Flow travels through the network, being multiplied by the weight of each arc and maintaining
balance of flow at each node. At each node r the flow is multiplied by the probability that facility

r is in capacity state £ given that y,, = 1. Thus, after visiting the last node, the flow is equal to

h“P“(y), the total transportation utility multiplied by the probability of scenario w.

15
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Figure 1: Probability chain flow network for scenario w with three facilities (adapted from Losada

et al. (2012))

The PFPP can now be reformulated as a mixed-integer linear program:

max. Zzwjkw

weN kel
s.t. hY = Z Wik, VYw € €,
ke
Z Z]}Dzz,kwr—l,kw = Z Wepw Vr=2,....J;weq,
ke teL ke

Wegow < Wy, Vr=1,...,J;ke K;weQ,
Wrpw >0 Vr=1,....; k€ K,w € Q,

(8b)(8d).

The objective (17a) is equivalent to (12a).

(17a)
(17b)

(17¢)
(17d)

(17e)

Remark 3. Because the values of h* are computed a priori, the second stage transportation problem

does not need to be linear or even convex.

Remark 4. Given a fixed allocation vector (g) this formulation can be solved by inspection: simply

calculate the probability of each scenario w.

In a set of pilot tests, we solved formulation (17) using Gurobi, an off-the-shelf optimization

software; the computation times were large for even small-sized problems (49 demand points, 5-10

facilities). Because formulation (17) has a block-diagonal structure (the constraints can be separated

by w), we employed an L-shaped decomposition strategy (Van Slyke and Wets, 1969). The following

section examines the practical performance of the greedy algorithm (Algorithm 1) and the L-Shaped

strategy.

16



5 Numerical Experiments

This section reports the results of computational experimentation with the PFPP. All experiments
were run on compute nodes contained in the Arkansas High Performance Computing Cluster using
a 64-bit Linux operating system. A node has 2 Xeon X5670 Intel processors, which each have 8
cores and a clock speed of 2.93GHz and share 24GB of memory.

The greedy algorithm was implemented in Python. We used the single-cut L-shaped method
(Van Slyke and Wets, 1969), also implemented in Python, to solve the two-stage stochastic pro-
gramming formulation (17); the master problem and sub-problems were solved using the Gurobi
commercial solver, version 5.5.0. (We found that solving the subproblems by inspection and then
calculating the optimal solution was no faster than solving them using Gurobi.) While we could
have used enhancements to the basic L-shaped method such as multiple cuts per iteration (Birge
and Louveaux, 1988) or regularization (Ruszczyniski, 1986), the main purpose of using this method
is to find an optimal solution in order to evaluate the performance of the greedy algorithm as well

as parameter sensitivity. A one-hour time limit was used for both the greedy algorithm and the

L-shaped method. The L-shaped method was terminated when the optimality gap, calculated “bl;“’,

reached 0.001.

Datasets The 49- and 88-node facility location datasets from Daskin (1995) were used (denoted

d49 and d88, respectively) with the following utility function:

wuij(tij(dij)) = 3exp (—3 (maxiiiji/(ili?}(;)/100>> ;
which models a convex decrease in the utility as the distance increases. The 49-node dataset includes
the capitals of lower-48 states in US plus Washington, D.C., and the 88-node dataset contains the
top 88 cities according to population.
To obtain a set of located facilities for a problem instance, we solved the capacitated p-median

2z G

problem (Hakimi, 1964), setting each facility’s capacity to a; = J—01)

implying that the system is designed with 10% excess capacity.
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Hazard Scenarios To model the random hazards, the scenarios in Table 1 were used along with
an additional “no hazard” scenario with probability 0.70. Each hazard has a geographic center
defined by a latitude and longitude. In every scenario each facility is exposed to one of three hazard
intensity levels. When the a hazard is realized, all facilities within a radius of radl are exposed to
a level 1 hazard; all facilities within a radius of rad2 are exposed to level 2. All other facilities are
not affected by the hazard and thus exposed to a level 0 hazard. Although this data is artificial,
a more realistic set of hazard scenarios with probabilities could be constructed based on historical
events data from the NOAA Storm Events Database. This database could be used to determine
the mean time between each type of storm. Then, for a user-defined planning horizon, probabilities

can be obtained for each event.

Table 1: Hazard scenarios

No. Type GeoCenter lat Ing radl rad2 prob.
0 No Hazard - - - - - 0.70
1 Earthquake  New Madrid, MO -89.32  36.35 100 500  0.005
2 Hurricane  New York City, NY -74 40.42 50 200 0.01
3 Hurricane New Orleans, LA -90.4  29.57 100 500 0.05
4 Earthquake Portland, OR -122.37 4533 50 200 0.005
5 Tornado Oklahoma City, OK -97.29 35.29 50 200 0.05
6 Snow Storm  Minneapolis, MN -93.13 44.59 100 500 0.08
7 Wildfire Boulder, CO -105.16 39.59 50 200 0.05
8 Flood Memphis, TN -90.2 35.8 25 100 0.05

Three hazard exposure cases were investigated in order of decreasing severity.

e (Conditional: The objective of the model is to minimize the expected total utility conditional

upon a hazard scenario occurring. Thus, the probability of hazard scenario s is ZPSP .

o All-Exposed: All facilities are exposed to hazard level 1, and the objective is to minimize the
expected total utility given this hazard level. This case is applicable for a context in which

facilities are at high risk of a disruption; for example a military theater of operations.

o Half-Fxposed: All facilities exposed to level 2.
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Model Parameters We used a penalty multiplier of d’ = 2.0 and set the capacity for each level

R
as ajy = 7 aj.

Two-Stage Stochastic Programming Model The probabilities of capacity states given
allocation amounts are defined by the binomial distribution so that P, = binomial(4, L —1, pjxm)

and pjgm = (%)M The scenario set for the three hazard exposure cases are defined as follows:

e Conditional: The scenario set is generated by considering all combinations of hazard levels
and facility capacity states. The probabilty of a given scenario w is the probability of its
corresponding hazard scenario (see Table 1) times the conditional probability for the facility
capacities state,

11> (Z P?ék) (18)

JET ke \LeL

e All-Exposed: In every scenario each facility is exposed to hazard level 1, i.e., for every
scenario w and facility j ¢%, =1 for m = 1 and 0 otherwise. The scenario set is generated
by considering all combinations of facility capacity states. The probabilty of a given scenario

w is the conditional probability for the facility capacities state (18).

e Half-exposed: The scenario set is generated in the same way as the all-exposed case except

that in every scenario each facility is exposed to hazard level 2.

Greedy Algorithm When computing the marginal benefit of each facility in line 5 of Al-
gorithm 1, each scenario needs to only contain information on the capacity levels for each facility
(€*). Thus, the set of scenarios, €2, is all possible combinations of facility capacity level vectors.

The probability of scenario w is then computed as

P(y) = [T 95(a1yy),

jeTJ
where g;(a¥|y;) is computed as in (1).
5.1 Runtime and Solution Quality of Algorithms

We measured the solution quality of the greedy algorithm (Algorithm 1) by comparing the perfor-

mance of its solution, y“, with that of the incumbent solution returned by the L-Shaped method
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after one hour, y'®. Table 2 shows the ratio Q(y“)/Q(y") for several problem instances. The bud-
get (b) values were obtained via the equation J x K x B, with B, the budget multiplier, equaling 1/3
and 2/3. Section 1 in the Supplemental Material shows the number of scenarios for each instance.
The presence of “mem.” in a cell within the table indicates that the L-Shaped algorithm ran out of
memory due to problem size; all row statistics do not include these instances. The “Gap” column

lists the optimality gap of the L-Shaped algorithm at termination.

Not surprisingly, the run time of the greedy algorithm is always less than that of SP. However,
the table also shows that the greedy algorithm always obtained a solution that is very near the
optimal solution, as indicated by a very high Q(y%)/Q(y") ratio. While corollary 3 guarantees a
Q(y%)/Q(y") ratio of 1 — e~! ~ 0.63, for these problem instances the ratio was never less than
0.954. In fact, for several instances this ratio is more than 1.0, which is because the L-Shaped
method was not able to find the optimal solution within one hour. In this case, Q(y') is the lower
bound returned by the L-Shaped method. The greedy algorithm performed better as the intensity

of the hazard exposure cases decreased from “All-Exposed” to “Conditional.”

5.2 Value of the Stochastic Solution (VSS)

We also analyzed the performance of solutions obtained by the mean value problem (MVP), a
deterministic model that replaces the random parameters in PFPP with their mean values (see

MVP and EV be the optimal solution and optimal objective

Appendix B for a formulation). Let y
value to MVP. The value of the stochastic solution ratio (see Birge and Louveaux (2011)) is
defined as VSSR = Q(yMV")/Q(y"). In addition, we also measured the upper bound ratio UBR =
EV/Q(y'™), which is a measure of the quality of the upper bound provided by MVP.

Table 3 contains values of VSSR and UBR for several problem instances. For each hazard
exposure case (e.g., “All-Exposed”), three quantities are listed: the optimality gap returned by the
L-Shaped method after one hour, V.SSR, and UBR. As the table shows, the solution quality of
the MVP solution is very good, as indicated by the high V.SSR values. In fact, VSSR > 1.0 for

some instances because the L-Shaped method did not find an optimal solution within one hour.
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The quality of the upper bound provided by MVP is also generally good, as indicated by the upper
bound ratio ranging from 1.014 to 1.354, with an average of 1.06.

We performed a Welch two-sample T-test on the values of the Q(y%)/Q(y') columns in Table
2 and the VSSR columns in Table 3. The difference was insignificant for the All-Exposed and
Half-Exposed cases, with P-Values of 0.701 and 0.981, respectively. However, the difference was
significant for the Conditional case (P=0.025), with the Greedy algorithm performing statistically
better. However, the difference in means was only 0.004.

For all of the instances shown in Table 3, the mean value model finish in less than one hundreth

of a second, which is significantly faster than the greedy algorithm.

5.3 Significance of Modeling Imperfect, Multi-level Protection and Multiple
Capacity Levels

As mentioned in the introduction, most infrastructure protection models only include two levels of
allocation (K = 2) and two capacity states (L = 2). In this section we examine the effect of these
modeling assumptions on solution quality.

Let yx; be the optimal solution to an instance of the two-stage SP model that models K
allocation levels and L capacity states. To measure the sensitivity of the PFPP to changes in K
and L, let K and L be the “true” values of the number of allocation levels and the number of capacity
levels, respectively. (For example, to solve an instance of the PFPP with 4 possible allocation levels
(K = 4) and 3 possible capacity levels (L = 3), we might use the two-stage SP model (17) as an
approximation to the true problem, selecting K = 2 and L = 2.) Let y?{ i be the solution that
we would obtain if we solved the “true” problem with K allocation levels and L capacity levels.
This solution can be obtained via the two-stage SP model with K allocation levels and L capacity
levels. The function Q;(-) computes the total weighted utility for a given solution applied to a
“true” problem instance with L capacity levels. However, when applying a solution obtained by
solving a model with K allocation levels and L capacity levels, g, to a “true” problem instance

with K allocation levels and L capacity levels, the following translation must be used in order to

ensure a fair comparison:
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K-1
Translated solution = % 1@KLa (19)

which denotes multiplying all of the elements of ¢ by %

To perform a sensitivity analysis, we computed the relative model error,

0:(y;) ~ 2z (B i)
TKLKL = 9 (y

: (20
D )

xe¥

for several problem instances. The solutions ¥, ; and y}i{i are the incumbent solutions returned
by the L-Shaped algorithm after one hour. The budget (b) values were set to J x K x B, with B,
the budget multiplier, equaling 0.25 and 0.75. For each K, L combination the relative model error
was computed for the three hazard exposure cases: All-exposed, Half-Exposed, and Conditional.
Figures 2-5 illustrate the effect that the following model and dataset parameters have on the relative
model error: hazard exposure case, number of facilities (J), budget multiplier (B), and the number
of demand points (I). In addition, ANOVA tests were run to test the significance of the effect of
each of these parameters (see Section 2 in the Supplemental Material for P-Values).

Figure 2 shows how the relative model error changes for the three hazard exposure cases. In
each of the subfigures, each 9x9 block represents a K, K combination. The cells within a 9x9 block
contain the relative model error for different L, L combinations. Figure 2a shows very little model
error for the conditional hazard exposure case. Figure 2b shows the most hazard exposure, and
Figure 2c shows a moderate amount. Figure 2 also shows that there is little change within a 9x9
block, indicating that the number of capacity levels modeled (L) does not have a significant effect
on the relative model error. However, the difference between blocks is more pronounced, especially
in Figures 2b and 2c, indicating that the number of allocation levels modeled (K') has a significant
effect on the relative model error. When the number of allocation levels modeled (K) is equal to
the actual number of allocation levels (f( ), then the relative model error is zero. When K is less
than K the error is positive, indicating that the model is deficient. When K is greater than K the
error is negative, indicating that the model is produces an objective value that is better than what
can be achieved in reality. (The ANOVA P-Values in Section 2 in the Supplemental Material also

support the significance of the number of allocation levels and the insignificance of the number of
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Figure 2: Robustness error for d49 dataset—analysis of hazard exposure case

(number of facilities (J) = 4, budget (B) = 0.25)

capacity levels.) Thus, the main findings from our sensitivity analysis are as follows:

F1) Significance of the number of allocation levels. When the number of allocation levels
modeled (K) is less than the actual number of allocation levels (K), then the relative model

error is positive. When K is greater than K the error is negative.

F2) Insignificance of the number of capacity levels. The number of capacity levels modeled

(L) does not have a significant affect on the relative model error.

The results in the remainder of this section support these two main findings.

Figure 3 shows the effect of the number of facilities on the relative model error. The top 81
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Figure 3: Robustness error for d49 dataset — analysis of number of facilities (budget (B) = 0.25,
all-exposed hazard exposure)

cells show the error for 4 facilities, and the bottom 81 cells show the error for 8 facilities. The
figure shows that both the top half and the bottom half show the presence of findings F1) and F2),
indicating that these two findings are robust with regard to the number of facilities.

Figure 4 shows the effect of the budget on the relative model error. The top 81 cells show the
error for a budget multiplier of 0.25, and the bottom 81 cells show the error for a multiplier of 0.75.
The figure shows that the top half shows the presence of findings F1) and F2), while the bottom
shows these findings, but with a much smaller magnitude of difference. Thus, these results indicate

the following additional finding:

F3) Signficance of the budget. When the budget value is very high (75% of the maximum
possible budget), then the number of allocation levels modeled has a less significant effect on

the relative model error.

Figure 5 shows the effect of the dataset on the relative model error. The top 81 cells show the
error for the d49 dataset, and the bottom 81 cells show the error the d88 dataset. The figure shows
that both the top half and the bottom half show the presence of findings F1) and F2), indicating

that these two findings are robust with regard to the choice between these two datasets. The dataset
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Figure 4: Robustness error for d49 dataset—analysis of budget (number of facilities (J) = 4, all-
exposed hazard exposure)

determines the number of demand points as well as their geographical dispersion.

6 Conclusions and Future Work

This paper tested several common assumptions in infrastructure protection modeling: 1) the pro-
tection of an infrastructure element is binary (either protected or not), 2) the protection of a facility
is perfect (a protected facility is immune to failure), and 3) facility failures are binary (completely
operational or completely failed). Toward this end, we formulated the probabilistic facility protection
problem (PFPP) as a two-stage stochastic program with decision-dependent uncertainty.

Due to the initial non-convex formulation, we presented a greedy algorithm and derived a worst-
case performance ratio of 0.63. We also presented a linearized mixed-integer linear stochastic pro-
gramming formulation and solved it using the L-Shaped method. Despite the greedy algorithm’s
worst-case bound of 0.63, our experimentation found this ratio to be much better in practice (be-
tween 0.954 and 1.0 when the L-Shaped method terminated at optimality).

We also found that a mean-value model compared favorably with the greedy algorithm: its

performance ratio was between 0.985 and 1.0 when the stochastic programming formulation was
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Figure 5: Robustness error— analysis of dataset (number of facilities (J) = 4, budget (B) = 0.25,
all-exposed hazard exposure)

solved to optimality.

Our numerical results point to several insights for infrastructure protection modeling: 1) It is
important to model imperfect, multi-level protection. If this feature is not included in a model, the
solution quality can be significantly degraded, especially if the budget is low: in one instance the
optimal objective of the incorrectly-modeled problem was only 55.0% of the true optimal objective
value. 2) A large number of capacity levels are not necessary; two capacity levels are usually

sufficient to obtain good quality solutions.

6.1 Discussion

The main implication of our results is that choosing the correct parameters, especially the number
of allocation levels, is more important than choosing the correct model or algorithm. Indeed, the
problem was robust to the choice of algorithm, the greedy algorithm often returning near-optimal
solutions. Moreover, the problem was robust to the choice of model, the mean-value model also
often returning near-optimal solutions. On the other hand, the problem was found to be not nearly
as robust to changes in the number of allocation levels. When this parameter was incorrectly chosen

to be lower than the true value, the solution quality was noticeably less. As a result, infrastructure-
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protection modelers are advised to model the correct number of allocation levels.

6.2 Future Work

The results of this paper indicate several avenues of future research. First, although we have
considered that the post-disruption facility capacities are binomially distributed, other probability
distributions would be interesting to study. For example, Shaked (1980) has shown that several
distributions from the exponential family are convexly parameterized, i.e., the expectation of a
convex function is convex in the distribution parameter. Like the binomial, these distributions
may also be submodular in the multivariate case under the assumptions of the PFPP. Second, it
would be useful to examine other risk measures such as value-at-risk and conditional-value-at-risk.
Third, although we have considered deterministic demand, studying the problem with stochastic
demand could yield additional insights. Fourth, there has been some work on multi-stage stochastic
programming with decision-dependent uncertainty, but there have been no studies on the type of
DDU that we considered. Finally, a case study is an important next step along this line of research.
Because the findings of this paper are based on synthetic data, an important next step is to validate
these findings on real data. Such a case study would involve using historical weather data to estimate
the frequence and severity of extreme events. In addition, a real distribution network should be

used that includes facility location and capacity data.
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A Proofs

Proof. Lemma 1. The first derivative of by, (p) is:

d

dfpbk,n(p) =1 (bp—1,n-1(P) = brn—1(p)) - (21)

The first derivative of (5) is

n n

Q' (p) = Z h(k)n (bg—1n—1(p) — brn-1(p)) =n Z h(k)bg—1n—1(p) — > h(k)bgn-1(p)
k=0

k=0 k=0

Re-indexing the first summation with £ = ¢+ 1 and the second with k£ = ¢, we have

|
—

d n
Q,(p) = %EXNBinom(n,p)h(X) n [h(ﬁ + 1) - h(E)] bf,n—l(p) = nEdleinom(n—l,p) (Ah) (X)v
0

~
Il

where A is the forward difference operator, i.e.,(Ah)(a1) = h(a; + 1) — h(ay).

Applying this result again,

Q”(p) = nQEXNBinom(nfl,p) (AQh) <X>7
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where A? is the second forward difference operator. Thus, Q”(p) < 0 on [0, 1] when h(-) is concave,

implying that Q(p) is concave.

Proof. Corollary 1. Let

n

Qy1) =By, Y h(k)gi(ar|n; mn).

k=0
In the case that ¢; has a point mass distribution, Q(y1) is concave due to Lemma 1 and the
fact that the composition of concave functions Q(f(y1)) preserves concavity because f() is non-
decreasing. In the case in which 1/;1 has more than one element in its range, Q(y1) is concave because

a non-negative weighted sum preserves concavity (Boyd and Vandenberghe, 2004). O

Proof. Theorem 1. The first derivative of Q(p) is

aQ(p) = Z Z h H bk],n p] <bkj/71,nfl(pj’) - bkj/,nfl(pj’)) .

k1=0  kmn=0 J#5’

Re-indexing the two terms of the summation separately with kj = £+ 1 and k;; = £ gives

8 = ”Z Z "4 1)) = hk(G )] T oy in(@)bem1(p;)-
pj! (=0 k;=0 i3
J#5’

The second derivative is

o )
PO 5SS a4 1) — b 0)]

T
¢{ -/ II}
H bkj,n(pj)bﬁ,n—l(pj/)n (bk]-u—l,n—l(pj“) - bkj//7n—1(pj”)) .
J¢ds’,3"}
Re-indexing the two terms of the summation separately with kj» = ¢ + 1 and kj» = ¢’ gives
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aQQ(p) 277,—1 n—1 n

el DD DEDD

Op;Ops (=0 /=0 k;=0
J¢dd’a"}

[(h(k(5", €+ 1)(", €'+ 1)) = h(k(5', £+ 1)(5",£)))
- (h(k(j,7£>(j//7£, + 1)) - h(k(]/7£>(]”¢€,)))]

H bkj,n(pj)b&n—l(pj’)bkj//,n—l(pj”)-
Jgld’d"}
Let x = k(j',0)(j",¢), y = k(j', £+ 1)(j”,¢') and h = (¢’ + 1)e;», where e; is a vector with a

1 at element j and a zero everywhere else. Note that x < y. By the submodularity of h(-) (see

92Q(p)
’ 8pj/ apj//

definition 1), we have that the difference in brackets is negative. Thus < 0, meaning that
Q(p) has increasing differences (Topkins, 1998). Because a function has increasing differences if

and only if it is submodular (Topkins, 1998, pgs. 42-45), we have the result. O

Proof. Corollary 2. Let

Qy)=Ey > - > h(lk) [] gi(aildyivy)-

k1=0 km=0 jeT

Using vector versions of the arguments made in corollary 1, Q(y) is submodular. O

Proof. Corollary 3. To show this result we will convert the discretized version of our optimization
problem (4) into the problem of maximizing a submodular set function. Define the set S; as the set
that contains the protection units allocated to facility j; note that 0 < |S;| < K. Then define the
set S=jcs 5

Thus, adding an element to S is equivalent to adding an additional protection unit to some

facility j. We can then define the submodular set function

()= Q(y(s)) = Y B*(y) h(a®),

weN
where y(S) as a vector whose ;& element equals |S;|. By the definition of the feasible region (6),

our problem can be posed as the maximization a monotone submodular function over a uniform
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matroid: maxgscy {f(5) : |S] < b}.
Thus, our greedy algorithm (Algorithm 1), which is equivalent to the R-step greedy algorithm

presented in Nemhauser et al. (1978), has the desired performance guarantee of 1 — % O

B Mean Value Model

The mean value problem for the PFPP, a deterministic model that replaces the random parameters

in PFPP with their mean values, can be formulated as follows:

J4+1
MVP : max. Z 2 €iU;ijTi; (22a)
ieZ j=1
s.t. Zeixij < Z E [dj|yjk =1] yir VieJ, (22D)
i€T kek
J+1
Y =1 Viel, (22¢)
j=1
l’ijZO Viel, jeJ, (22d)
(6)(34), (22)

where E [d}|y;x = 1] = > Eij [Pj,e,z&j,k] .
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Table 2: Runtime and solution quality for greedy algorithm and two-stage stochastic programming

model.
Half-Exposed All-Exposed Conditional
Dataset-J-K-L-b Run Run Cap Q%)) Run Run Cap Q(y%)/Run Run Gap Q(y%)/
time  time O(y'®)  time time O(y') time  time Q(y'?)
SP G SP G SP G
d49 6 3 3 4 40 3 0 0.996 38 3 0 0.991 26 4 0 1
d49 6 3 3 8 138 3 0 0.998 131 0 1 72 4 0 1
d49 6 3 4 4 62 8 0 0.997 59 0 0.993 117 14 0 1
d49 6 3 4 8 216 10 0 0.998 213 10 0 1 310 17 0 1
d49 6 4 3 6 177 4 0 0.964 158 0 1 91 6 0 1
d49 6 4 3 12 991 5 0 0.996 1064 0 0.999 286 7 0 0.999
d49 6 4 4 6 335 14 0 0.963 267 14 0 1 438 25 0
d49 6 4 4 12 1760 17 0 1 1658 17 0 1 1429 30 0 0.999
d49 9 3 3 6 3602 50 0.04 1.01 3602 50 0.04 1.021 3613 84 0.04 1.001
d49 9 3 3 12 3601 60 0.17 1.139 3600 59 0.1 1.074 3607 104 0.01 1
d49 9 3 4 6 <—mem.— 3619 746 0.33 1.316 < mem.—
d49 9 3 4 12 <—mem.—
d49 9 4 3 9 3601 87 0.03 1 3601 89 0.03 1 3613 152 0.03 0.999
d49 9 4 3 18 3602 105 0.35 1.314 3602 107 0.22 1.201 3602 187 0.01 1.001
d49 9 4 4 9 3610 1117 0.13 1.074 <—mem.—
d49 9 4 4 18 mem.—
d88 6 3 3 4 39 4 0 1 38 4 0 1 28 5 0 1
d88 6 3 3 8 141 5 0 0.996 133 5 0 1 70 6 0 1
d88 6 3 4 4 63 12 0 0.999 60 12 0 1 118 18 0 1
d88 6 3 4 8 223 14 0 0.996 215 13 0 1 304 20 0 1
d88 6 4 3 6 173 0 1 156 0 1 93 0 1
d88 6 4 3 12 997 0 1 1017 7 0 1 280 0 1
d88 6 4 4 6 338 20 0 0.954 271 20 0 1 449 31 0 1
d88 6 4 4 12 <—mem.— 1569 22 0 1 1444 35 0 1
88 9 3 3 6 3602 7 0.03 1.016 3600 76 0.02 1.01 3613 109 0.04 1.004
88 9 3 3 12 3604 82 0.11 1.084 3602 83 0.09 1.077 3607 136 0.01 1
d88 9 3 4 6 mem.—
d88 9 3 4 12 <—mem.—
d88 9 4 3 9 3601 127 0.02 0.978 3601 124 0.02 1 3604 187 0.05 1.013
88 9 4 3 18 3603 142 0.06 1.037 3602 143 0.23 1.211 3603 223 0.02 1.013
dg88 9 4 4 9 —mem.—
88 9 4 4 18 <—mem.—
min. 39 3 0.00 0.954 38 3 0.00  0.991 26 4 0.00 0.999
= max. 3610 1117  0.35 1.314 3619 746 0.33 1.316 3613 223 0.05 1.013
< avg. 1588 83 0.04 1.021 1579 65 0.04 1.036 1434 59 0.01 1.001
stdev. 1639 225 0.081 0.074 1610 148 0.088 0.083 1611 70 0.015 0.004
N min. 0.954 0.991 0.999
5 max. 1.000 1.000 1.000
N avg. 0.990 0.999 1.000
stdev. 0.016 0.003 0.000
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Table 3: Value of the stochastic solution for several problem instances.

Half-Exposed All-Exposed Conditional
Dataset-J-K-L-b SP VSSR UBR SP VSSR UBR SP VSSR UBR
Opt. Opt. Opt.
Gap Gap Gap
d49 6 3 3 4 0 0.996 1.041 0 1.000 1.030 0 1.000 1.037
d49 6 3 3 8 0 1.000 1.044 0 1.000 1.033 0 0.994 1.016
d49 6 3 4 4 0 0.997 1.028 0 1.000 1.021 0 1.000 1.032
d49 6 3 4 8 0 1.000 1.030 0 1.000 1.021 0 0.995 1.013
d49 6 4 3 6 0 1.000 1.052 0 1.000 1.038 0 1.000 1.035
d49 6 4 3 12 0 1.000 1.038 0 0.999 1.037 0 0.985 1.011
d49 6 4 4 6 0 1.000 1.035 0 1.000 1.024 0 1.000 1.030
d49 6 4 4 12 0 1.000 1.025 0 1.000 1.025 0 0.986 1.008
d49 9 3 3 6 0.04 1.011 1.036 0.04 1.022 1.038 0.04 1.005 1.039
d49 9 3 3 12 0.17 1.139 1.171 0.1 1.074 1.095 0.01 0.996 1.011
d49 9 3 4 6 <—mem.— 0.33 1.316 1.333 <—mem.—
d49 9 3 4 12 <—mem.—
d49 9 4 3 9 0.03 1.000 1.032 0.03 1.000 1.025 0.03 1.006 1.033
d49 9 4 3 18 0.35 1.318 1.354 0.22 1.202 1.225 0.01 0.996 1.008
d49 9 4 4 9 0.13 1.105 1.128 <—mem.—
d49 9 4 4 18 <mem.—>
d88 6 3 3 4 0 0.999 1.022 0 0.998 1.016 0 1.000 1.038
ds8 6 3 3 8 0 1.000 1.029 0 1.000 1.025 0 0.999 1.016
d88 6 3 4 4 0 1.000 1.014 0 1.000 1.012 0 1.000 1.034
ds8 6 3 4 8 0 1.000 1.019 0 1.000 1.016 0 0.999 1.012
d88 6 4 3 6 0 1.000 1.031 0 1.000 1.028 0 1.000 1.036
ds8 6 4 3 12 0 1.000 1.028 0 1.000 1.028 0 0.994 1.011
d88 6 4 4 6 0 1.000 1.020 0 1.000 1.018 0 1.000 1.032
d88 6 4 4 12 < mem.— 0 1.000 1.018 0 0.995 1.008
d88 9 3 3 6 0.03 1.016 1.031 0.02 1.009 1.023 0.04 1.004 1.043
ds8 9 3 3 12 0.11 1.084 1.106 0.09 1.076 1.095 0.01 0.978 1.012
ds8 9 3 4 6 <mem.—>
d88 9 3 4 12 <—mem.—
dss 9 4 3 9 0.02 1.000 1.025 0.02 1.000 1.019 0.05 1.013 1.047
dgg8 9 4 3 18 0.06 1.040 1.061 0.23 1.211 1.233 0.02 0.990 1.021
dg88 9 4 4 9 —mem.—
d88 9 4 4 18 <—mem.—>
min. 0.000 0.996 1.014 0.000 0.998 1.012 0.000 0.978 1.008
= max. 0.350 1.318 1.354 0.330 1.316 1.333 0.050 1.013 1.047
< avg. 0.04 1.03 1.06 0.04 1.04 1.06 0.01 1.00 1.02
stdev. 0.08 0.07 0.07 0.09 0.08 0.08 0.02 0.01 0.01
min 0.996 0.998 0.985
Opt. max. 1.000 1.000 1.000
avg. 0.999 1.000 0.997
stdev. 0.507 0.508 0.506
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