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Abstract

In this paper we consider a generalization of the p-center problem called the r-all-neighbor p-center problem
(RANPCP). The objective of the RANPCP is to minimize the maximum distance from a demand point to
its rth-closest located facility. The RANPCP is applicable to facility location with disruptions because it
considers the maximum transportation distance after (r − 1) facilities are disrupted. While this problem
has been studied from a single-objective perspective, this paper studies two bi-objective versions. The
main contributions of this paper are 1) algorithms for computing the Pareto-efficient sets for two pairs of
objectives (closest distance vs rth-closest distance and cost vs. rth-closest distance) and 2) an empirical
analysis that gives several useful insights into the RANPCP. Based on the empirical results, the RANPCP
produces solutions that not only minimize vulnerability but also perform reasonably well (43% from optimal,
on average) when disruptions do not occur. In contrast, if disruptions are not considered when locating
facilities, the consequence due to facility disruptions is about 630% higher, on average, than if disruptions
had been considered. Thus, our results show the importance of optimizing for vulnerability. Therefore, we
recommend a bi-objective analysis.

Keywords: Facility location; Interdiction; Stackelberg game; Mixed-integer programming; Bi-objective
programming; Disruptions; Risk assessment

1. Introduction

In this paper we consider the problem of locating facilities that are subject to disruptions. In particular,
we study the r-all neighbor p-center problem (RANPCP), in which the objective is to minimize the maximum
distance from a demand point to its rth closest facility, which is the maximum distance from a demand point
to its closest non-disrupted facility after a worst-case disruption of (r − 1) facilities occurs. In addition
to studying the maximum rth closest distance objective, we also study the maximum 1st closest distance
objective, which is the objective of the classic p-center problem. In other words, we study both the post-
disruption and pre-disruption performance of the system in order to give decision-makers a more complete
picture of their system of facilities. Toward this end, we present algorithms for computing the complete
Pareto-efficient set for the following pairs of objectives: (1) maximum 1st closest distance vs. maximum rth

closest distance and (2) cost of locating facilities vs. maximum rth closest distance.
The facility location problem is a fundamental problem that has been studied for a long time by researchers

from many different disciplines. Over time, as researchers began to develop location models for specific
applications such as locating fire stations and ambulances, location models began to include the unavailability
of facilities and vehicles in order to reflect reality. For example, ambulances in large metropolitan areas are
very busy and not always available for service.

In response, researchers began developing deterministic facility location models that address facility un-
availability by considering backup coverage. Other researchers followed by considering the use of backup
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coverage as a method for mitigating against facility unavailability caused by terrorist attacks, random failures
of facilities, and congestion of servers. As a result, facility location research has developed further to in-
clude backup-coverage extensions of the p-median, p-center, set covering problem, and maximal set covering
problem. Most of the literature on facility location with backup coverage has focused on the degradation in
overall service incurred when some facilities become unavailable and unable to serve customers. Specifically,
most of the models involve locating backup facilities to minimize this potential degradation.

Some research has considered that facilities become unavailable because of random causes: natural or
man-made disasters, congestion of servers, etc. Drezner (1987) was the first to consider random facility
failures in the p-median model and his research was extended by others (Lee, 2001; Snyder and Daskin,
2005; Berman et al., 2007), and also modified to study facility protection instead of location (Li et al.,
2013). Snyder and Daskin (2005) and Cui et al. (2011) have modeled facility failures in the fixed-charge
location problem. Daskin (1982, 1983) was among the first to consider random facility unavailability in
the maximal covering location problem. His work was subsequently extended by Batta et al. (1989), who
explicitly included queuing in their model.

Rather than considering random failures, other research has sought to minimize the worst case degra-
dation in service; in other words, they measure the risk of facility failures by the worst case degradation.
This research is motivated by the facility interdiction problem (Aksen et al., 2012; Church et al., 2004; Zhu
et al., 2013), in which an attacker seeks to cause a maximal disruption to a set of facilities. Several papers
have included backup coverage in the set covering model, which ensures adequate coverage in the event of
facility unavailability. Van Slyke (1982) was the first to include backup coverage in a set covering model
and Church and Gerrard (2003) worked on the location set covering problem with facility failures, in which
only one vehicle can be located at a potential location. One of the earliest models involving the maximal
covering problem with backups was by Daskin and Stern (1981), who minimized two objectives: the total
amount of demand coverage and the number of facilities located. This research has since been followed by
others (see Brotcorne et al. (2003) for a survey). Aksen et al. Aksen and Aras (2012); Aksen et al. (2013)
have studied the problem of locating facilities to minimize the worst case degradation in service. Rather
than locating facilities, other researchers have examined the question of how to optimally allocate protection
resources among a set of facilities (Scaparra and Church, 2008; Liberatore et al., 2011).

Several authors have studied a location problem called the r-neighbor p-center problem (RNPCP, an
extension of the p-center problem in which the problem is to locate p facilities amongst a set of nodes in
order to minimize the maximum distance from a client node, defined as a node that does not have a facility
located on it, to its rth closest located facility. This problem is also applicable for locating emergency
vehicles that must respond to events requiring more than one vehicle. In this context he RNPCP minimizes
the maximum response time of the rth vehicle to a demand point. The RNPCP can also be used to minimize
the maximum response time of a single vehicle when (r − 1) vehicles are busy. Krumke (1995) developed a
4-approximation algorithm1 for the RNPCP. Chaudhuri et al. (1998) and Khuller et al. (2000) independently
developed different 2-approximation algorithms for the RNPCP and show that a better approximation cannot
be obtained in polynomial time.

Other authors have studied a version of the r-neighbor p-center problem in which all nodes are client
nodes, rather than defining a client node as a node that does not have a facility located on it. Drezner

1An α-approximation algorithm is an algorithm that is guaranteed to find a solution with an objective function value of no
more than α times the optimal objective value.
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(1987) called this problem the (p, r)-center problem and described a heuristic algorithm for the version where
facilities can be located anywhere in a plane. Khuller et al. (2000) named this problem the r-all-neighbor p-
center problem (RANPCP) and provided approximation algorithms that guarantee an approximation factor
of 3 and if r < 4, an approximation factor of 2.

Elloumi et al. (2004) presented a new model and an exact solution method for the p-center problem (PCP)
and mentioned that their model and solution method can also be used to solve the RANPCP. They find that
the LP relaxation bound of their model is at least as good as that of the standard p-center MIP model (see
Daskin (1995)) and found that in many cases their bound is strictly better. They also demonstrate that a
tight lower bound can be computed by solving a polynomial number of linear programs within a binary search
algorithm, showing that their lower bound is at least 1/3 of the optimal objective when the distances obey the
triangle inequality and at least 1/2 of the optimal objective when distances are symmetric. However, they do
not prove that the approximation factors for their bounds are valid for the RANPCP. Their computational
results show when they incorporate their lower bound into the standard binary search algorithm for the
PCP, the binary search algorithm is able to solve PCP instances of up to 1817 nodes. Because Elloumi et al.
(2004) focused on the PCP, they leave out the details needed to extend their lower bound to the RANPCP
and only present empirical results for the PCP.

This article extends the existing literature on the RANPCP by studying the bi-objective version of the
RANPCP. Although there has been work on the facility location problem with multiple objectives (see
Current et al. (1990)), only a few studies have examined multiple objectives in the facility location problem
with disruptions. Snyder and Daskin (2005) optimized a weighted combination of the system performance
before and after disruptions for the p-median problem with random disruptions, and O’Hanley and Church
(2011) did the same for the maximum covering location problem with interdiction. However, optimizing a
weighted combination of two objective functions is only guaranteed to produce the Pareto-efficient set if the
two objective functions are convex (Berube et al., 2009), which is not the case for discrete problems such as
the RANPCP. Hernandez et al. (2013) perform a tri-objective analysis of the uncapacitated facility location
problem. However, because they use an evolutionary algorithm, their approach is not guaranteed to find
the complete Pareto-efficient set. This article is the first to describe a method for computing the complete
Pareto-efficient set for a facility location problem with disruptions.

The main contributions of this article are the following. (1) An algorithm is presented for computing
the Pareto-efficient set for combinations of two objectives: closest distance vs rth-closest distance and cost
vs. rth-closest distance. (2) Empirical testing of the single- and bi-objective RANPCP suggest several
decision-making insights. In addition to these main contributions, empirical testing indicates that a simple
MIP formulation for the single-objective RANPCP provides computational gains over an MIP formulation
by Elloumi et al. (2004).
2. Single-objective Problem

The r-all-neighbor p-center problem (RANPCP) can be defined as

locate p facilities amongst a set of candidate locations in order to minimize the maximum distance
from a demand point to its rth closest facility.

For the sake of brevity, we will refer to the maximum distance as the radius (Elloumi et al., 2004). Because
we are concerned with facility disruptions, the maximum rth closest distance is the post-disruption radius.
Thus, the maximum 1st closest distance is the non-disruption radius, the objective of the classic p-center
problem.
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The RANPCP can be mathematically stated as follows. Let N be a set of points, I ⊆ N be a set of
potential facility locations and J ⊆ N be a set of demand points. Let dij be the desirability of serving
demand point j ∈ J with facility i ∈ I. Because our solution methods are still valid if they are applied to
a problem instance whose distances do not obey the triangle inequality, we could let dij = hjd

′

ij , where d
′

ij

is the distance from i to j and hj is the weight of demand point j. For simplicity, in this paper we refer to
dij as the distance from i to j. Let X ⊆ I be a set of located facilities and let Dr

j (X ) be the distance from
demand point j to its rth closest located facility when the facilities X are located. The RANPCP requires
that |X | ≤ p, the number of facilities that may be located. The RANPCP can be stated as:

min
X ⊆ I
|X | ≤ p

max
j∈J

Dr
j (X ) (1)

Drezner (1987) modeled the situation in which an interdictor seeks to destroy r facilities in order to
maximize the maximum post-interdiction distance from a demand point to its closest available facility. He
called this model the (p, r)-center problem. He noticed that the interdictor’s optimal strategy is to choose
a demand point and interdict the r closest located facilities to that demand point. Thus, the (p, r)-center
problem is equivalent to the (r + 1)-all-neighbor p-center problem.

In an optimal solution to the RANPCP, each demand point is covered by at least r facilities, meaning that
each demand point is within U∗ distance units of r facilities, where U∗ is the optimal maximum distance.
Thus, the parameter r can represent either the number of covers or the number of neighbors required by
each demand point.

The RANPCP model relates to several concepts in risk assessment. First, the consequence modeled in
the RANPCP is the increase in the maximum distance from a demand point to its closest facility when (r−1)

facility disruptions have occurred. The RANPCP does not consider the likelihood of a facility disruption
event; rather, it models the situation in which a facility disruption event has occurred. Further, in the
RANPCP model the vulnerability of facilities is complete. That is, if a facility is affected by an event such
as a natural disaster or attack, the facility is completely inoperable. Thus, the objective of the RANPCP is
to minimize the worst case consequence.

In the rest of this section we describe a simple MIP formulation for the RANPCP.

2.1. Multiple-Assignment Formulation

The MIP formulation we present is a simple modification of the MIP formulation for the classic p-center
problem (see Daskin (1995)). In this classic formulation, assignment variables, Xij , take a value of 1 if
facility i is the closest located facility to demand point j. The following constraints are included to ensure
that every demand point is assigned to exactly one facility.

∑
i∈I

Xij = 1 ∀j ∈ J (2)

A formulation for the RANPCP can be obtained by assigning each demand point to multiple facilities,
which explicitly models backup assignments. In particular, each demand point is assigned to r facilities.
Thus, the distance from a demand point j to its rth closest facility is simply maxi∈Ij{dij}, where Ij is the
set of r facilities that are assigned to j. Therefore, the maximum rth closest distance is maxj∈J maxi∈Ij{dij}.
Because each demand point is assigned to multiple facilities, this formulation can be called the multiple-
assignment (MA) formulation. To allow for multiple assignments, Xij is redefined as a binary variable that

4



is 1 if demand point j is assigned to facility i at some level and 0 otherwise. In addition, the variable Yi is
1 if a facility is located at i and 0 otherwise. The MA formulation is as follows:

(MA) min U (3a)

s.t. dijXij ≤ U ∀i ∈ I, j ∈ J (3b)∑
i∈I

Xij = r ∀j ∈ J (3c)

Xij ≤ Yi ∀i ∈ I, j ∈ J (3d)∑
i∈I

Yi ≤ p (3e)

Yi ∈ {0, 1} ∀i ∈ I (3f)

Xij ∈ {0, 1} ∀i ∈ I, j ∈ J (3g)

The objective (3a) and Constraints (3b) ensure that the objective value is equal to the maximum value
of the weighted distance between demand points and their rth closest located facility, over all demand
points. Constraints (3c) require that every demand point be assigned to r facilities. In conjunction with
the minimization objective, Constraints (3b) and (3c) jointly require each demand point to be assigned to
its r closest located facilities. Constraints (3d) only allow assignments to be made to located facilities and
Constraint (3e) limits the number of facilities located. Constraints (3f) and (3g) require the decision variables
to be binary.

2.2. Other Models

We also investigated several other models, which are given in Appendix A. However, the (MA) formula-
tion outperformed all of them in a set of preliminary experiments.

2.3. Binary Search Algorithm

As an alternative to solving the MA formulation using branch-and-bound, we can also solve the RANPCP
using a binary search algorithm similar to the one used to solve the p-center problem (Daskin, 1995). The
binary search algorithm is an attractive alternative because 1) it solves the RANPCP faster than the MIP
formulations (see Section 1) and 2) it can identify the presence of a special property called saturation (see
Section 4.1.4).

The binary search algorithm for the p-center problem solves a series of set cover problems (SCPs) to
find the optimal maximum distance. Our binary search algorithm for the RANPCP uses the multi-set-cover
location problem (MSCLP) (Church and Gerrard, 2003) in place of the SCPs. The multi-set-cover location
problem modifies the SCP because it requires that each demand point be covered by at least ` facilities,
rather than 1. The MSCLP is formulated as the following MIP:

(MSCLP(δ)) min
∑
i∈I

Yi (4a)

s.t.
∑

i∈{i:dij≤δ}

Yi ≥ r ∀j ∈ J (4b)

Yi ∈ {0, 1} ∀i ∈ I (4c)

The RANPCP can be solved by using the binary search algorithm described in Algorithm 1.
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Algorithm 1 Binary search algorithm for RANPCP.
1: function BinarySearch
2: Let D = {D1, . . . , D|I|×|J|} be the set of all distances, {dij}i∈I,j∈J , arranged in increasing order.
3: lbIndex← 0; ubIndex← |D| − 1
4: while lbIndex 6= ubIndex do
5: Set index = lbIndex+

⌈
ubIndex−lbIndex

2

⌉
6: Obtain a heuristic solution to MSCLP(Dindex), Ȳ . Let Ŷ = {i ∈ I|Ȳi = 1}. . Optional
7: if |Ŷ | ≤ p then ubIndex← index; go to Line 5.

. Optional
8: Build RANPCP solution using Ŷ . Let î be the index of its post-disruption radius. . Optional
9: if Dî < DubIndex then ubIndex← î go to Line 5.

. Optional
10: Solve MSCLP(Dindex) to optimality, obtaining solution Y ∗.
11: if |Y ∗| > p then lbIndex← index+ 1.
12: else ubIndex← index.
13: return Y ∗

Lines 6–9 are optional steps added to speed up the algorithm by reducing the number of times that
MSCLP must be solved to optimality. Step 6 of Algorithm 1 involves finding a heuristic solution to the
MSCLP. One way to find such a solution is by using a heuristic algorithm for the set cover location problem
(Balas and Ho, 1980), modified here for the MSCLP. First, a demand point is said to be single covered if there
is at least one facility within Dindex. A demand point is multi-covered if there are at least r facilities within
distance Dindex. Let ni be the number of facilities that can single-cover demand point i within distance
Dindex. Proceeding through the list of demand points by increasing order of ni, cover a demand point i by
locating the facility that single-covers the maximum number of un-multi-covered demand points. Continue
until all of the demand points are multi-covered. Then remove all redundant facilities, i.e., facilities for which
all demand points are multi-covered after even if the facility is removed.

The method for building a heuristic solution to the RANPCP in step 8 is as follows.

1. If |Ŷ | > p, remove the facility whose removal minimizes the increase in the RANPCP objective.

2. Repeat step 1 until |Ŷ | ≤ p.
3. Return the modified set Ŷ as the RANPCP heuristic solution.

2.3.1. Bounds

We computed lower and upper bounds before using the binary search algorithm in order to reduce the set
of distances over which the binary search algorithm searches. These lower and upper bounds can be added
to the binary search algorithm by removing all values in D that are outside the bounds.

A simple lower bound can be obtained by locating the closest r facilities to every demand point:

LB0 = max
j∈J
{dirj j}

Note that when r = 1, this lower bound is zero.
Elloumi et al. (2004) described another lower bound for the PCP and here we describe how to modify their

lower bound for the RANPCP. First, let i′j(r, i) be the rth closest location to demand point j, not including
location i and let γi = maxj∈J di′j(r,i),j . Next, sort the γi values in increasing order γi1 ≤ γi2 ≤ · · · ≤ γj|I| .
Then, LB1 = γ|I|−p. Note that LB1 is not always zero for r = 1. In our experimentation, we used
max{LB0, LB1} as the lower bound.
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Elloumi et al. (2004) also described two upper bounds for the PCP but these bounds cannot be directly
extended to the RANPCP because the RANPCP requires each demand point to be covered r times while
the PCP only requires each demand point to be covered once. A simple upper bound for the RANPCP can
be obtained by assuming that the p furthest facilities to every demand point are located. In this case, the
rth closest located facility to a demand point j will be located at the (|I| − p + r)th closest location to j.
Thus, an upper bound is:

UB0 = max
j∈J
{d
i
|I|−p+r
j j

}

These bounds can also be used to improve the tractability of the MIP formulations. A lower bound lb
may be added to Formulation MA by adding the constraint lb ≤ V .

2.3.2. Greedy Heuristic

One way to find an initial upper bound for the binary search algorithm is to find a good initial feasible
solution. The following greedy heuristic, which is a modification of a heuristic by Mladenović et al. (2003)
for the p-center problem, can be used to find an initial feasible solution and corresponding upper bound,
UB1.

1. Solve the 1-center problem (arg mini∈I maxj∈J dij) and place r facilities at the 1-center.

2. Remove a facility from the 1-center and place it at the node that minimizes the resulting objective
increase; repeat until only one facility is located at the 1-center.

3. Let the set I ′ be the set of locations that do not have a facility and let ∆(i) be the objective function
decrease associated with locating a facility at i. Locate a facility at i′ ∈ arg mini∈I′ ∆(i). Repeat until
all p facilities have been located.

3. Bi-objective Problem: Generating Pareto-Efficient Sets

A drawback of the RANPCP model is that it only optimizes one objective: the post-disruption radius.
However, the non-disruption radius is likely to be a concern of most decision-makers because it represents the
operational cost without disruptions. In addition, a decision-maker might also like to include the number of
facilities (p), which represents the system design cost, as an objective. Since these objectives are conflicting,
it is more appropriate to present a set of solutions and let the decision-maker choose a single solution from
the set. One such set of solutions is the set of Pareto-efficient points.

A Pareto efficient set for two objectives can be described as follows. If α and β are two objectives of
interest to a decision maker, the set T = {(α, β)} may represent the set of all possible pairs of objective
values. Assuming T is countable, the kth point in the Pareto efficient set can be represented by (αk, βk).
Point k1 is said to dominate point k2 if point k1 is better than point k2 in one objective and point k1 is no
worse than point k2 in the other objective. A point that is not dominated by any other point is called a
Pareto optimal point. A Pareto-efficient set, denoted here as S ⊆ T , is the set of all Pareto optimal points.
The Pareto-efficient set for three objectives can be described in a similar manner.

Since the problems studied in this paper are discrete, the Pareto-efficient set is a set of discrete points,
as shown in Figure 1. The black points represent Pareto-efficient points and the dashed lines are displayed
to show that the α-objective stays constant as the β-objective decreases.

In general, the problem of finding all Pareto-efficient solutions is difficult. When α and β are convex
functions of the decision variables, a weighted-sum approach can be used to generate the Pareto-efficient set.
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However, the RANPCP and its bi-objective derivatives are combinatorial problems, and thus non-convex.
Fortunately, the efficiency of the binary search algorithm presented in Section 2.3 facilitates the efficient
generation of the set S for various combinations of objectives, as described in the following sections.

α

β
βmax

αmax

αmin

βmin

Figure 1: Pareto efficient set.

3.1. Max Closest Distance Vs. Max rth Closest Distance

An efficient method for computing the Pareto-efficient set for these two objectives is to use Algorithm 1
to alternately solve for one objective with a constraint on the other objective, which we call the alternate
binary-search (ABS) method. ABS similar to the ε-constraint approach for multi-objective combinatorial
optimization problems described by Berube et al. (2009), except that ABS uses binary search to solve the
single-objective problems rather than branch-and-cut.

Let RANPCP(·, δ(r)) denote the problem of minimizing the non-disruption radius subject to a constraint
that requiring the post-disruption radius to be no greater than δ(r). Further, let RANPCP(δ(1), ·) denote
the problem of minimizing the post-disruption radius subject to a constraint requiring the non-disruption
radius to be no greater than δ(1). The problems RANPCP(·, δ(r)) and RANPCP(δ(1), ·) can both be solved
using Algorithm 1 with a modified auxiliary problem. In particular, the MSCLP(δ(r)) auxiliary problem
is modified to account for both post-disruption radius and non-disruption radius, forming the distance-
constrained MSCLP (DC-MSCLP):

(DC-MSCLP(δ(1), δ(r))) min
∑
i∈I

Yi (5a)

s.t.
∑

i∈{i:dij≤δ(1)}

Yi ≥ 1 ∀j ∈ J , (5b)

∑
i∈{i:dij≤δ(r)}

Yi ≥ r ∀j ∈ J , (5c)

Yi ∈ {0, 1} ∀i ∈ I. (5d)

The DC-MSCLP(δ(1), δ(r)) minimizes the number of facilities located subject to the requirements that i)
the rth closest facility to a demand point be within δ(r) distance units (5c) and ii) the closest facility to a
demand point be within δ(r) distance units (5c).

The DC-MSCLP(δ(1), δ(r)) can be used to solve RANPCP(·, δ(r)) by i) fixing δ(r) in Constraints (5c) and
ii) varying δ(1) in Constraints (5b) within in a binary search algorithm (see Algorithm 1) in order to find the
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optimal non-disruption radius, δ(1)∗. The DC-MSCLP(δ(1), δ(r)) can also be used to solve RANPCP(δ(1), ·):
i) fix δ(1) in Constraints (5b) and ii) vary δ(r) in Constraints (5c) within in a binary search algorithm in
order to find the optimal non-disruption radius, δ(r)∗.

Using RANPCP(·, δ(r)) and RANPCP(δ(1), ·) as subproblems, Algorithm 2 efficiently generates the set
of Pareto-efficient points. In Step 1, RANPCP(·, δ(r)k − ε) is solved to find the non-disruption radius for
Pareto-efficient point (k+ 1). The value δ(r)k − ε is used for the post-disruption cover distance to ensure that
the optimal non-disruption radius will increase from the previous iteration. In Step 2, RANPCP(δ(1)k , ·) is
solved to obtain Pareto-efficient point k.

Algorithm 2 Constructing the Pareto-efficient set for max closest distance and max rth closest distance
objectives.
1: function ABS
2: Let ε be a small number.
3: Set k ← 0, δ(1)0 = 0, δ(r)0 = maxij{dirj j}, and S ← S ∪ {(δ(r)0 ,minij{dij})}
4: while δ(1)k 6= maxij{dij} do
5: Solve RANPCP(·, δ(r)k − ε) to obtain min. non-disruption radius δ(1)k . Step 1
6: Solve RANPCP(δ(1)k , ·) to obtain min. post-disruption radius δ(r)k+1 . Step 2
7: Set S ← S

⋃
{(δ(r)k+1, δ

(1)
k )}

8: k ← k + 1

9: return S

3.2. Number of Facilities Located Vs. Maximum rth Closest Distance

The optimal max rth closest distance depends on the value of p because each additional facility adds
more redundancy to the system. However, in most facility location problems there is a diminishing return
on adding more facilities. Thus, it is useful for a decision-maker to understand the decrease in the max rth

closest distance that results from adding more facilities. One way to display this diminishing return is by
constructing the Pareto-efficient set between the number of facilities located and the max rth closest distance.
This set can be constructed using Algorithm 3, which is in the same spirit as Algorithm 2. Algorithm 3
differs from Algorithm 2 in that it maintains upper bounds for the RANPCP in Step 1. Also, Step 2 consists
of merely incrementing the design cost, rather than solving an optimization problem.

Algorithm 3 Constructing the Pareto-efficient set for design cost and max rth closest distance objectives.
1: function ABS-CostVsRthClosestDistance
2: RANPCP(p):= RANPCP problem with a budget of p facility locations
3: δ̄(p) := incumbent upper bound for RANPCP(p)
4: Set k ← 0 and set δ̄(p) =∞ for p = 1 to |I|
5: Solve MSCLP(maxij{dij}) to obtain p0.
6: while pk ≤ |I| do
7: Set min{UB0, UB1, δ̄(pk)} as the initial UB to RANPCP(pk) . Step 1a
8: Solve RANPCP(pk) using Algorithm 1 to obtain min. post-disruption radius δ(r)k . Step 1b
9: (During the execution of the Algorithm 1, continually update the function δ̄(·).)

10: Set S ← S
⋃
{(δ(r)k , pk)}

11: Set pk ← pk + 1
12: k ← k + 1

13: return S
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Step 1 of Algorithm 3 minimizes the post-disruption radius subject to a restriction on the number of
facilities located. Step 1 requires the upper bounds, δ̄(p), to be updated during the execution of Algorithm
1. The upper bounds can be updated by replacing Step 4 of Algorithm 1 with the following:

Step 4 If |Y ∗| > pk, set lbIndex = index + 1 and set δ̄(|Y ∗|) ← min{δ̄(|Y ∗|), Dindex}. Otherwise, set
ubIndex = index. Return to step 2.

4. Numerical Experimentation

This section describes experiments performed on the single- and bi-objective RANPCP. All experiments
were run on a 64-bit 2.66GHz AMD processor running the Linux operating system with 16GB of memory.
All MIP formulations, including the multi-set-cover location problem, were solved with CPLEX v12.1.

Before solving an instance, we first found a lower bound LB = max{LB0, LB1}, an upper bound UB =

min{UB0, UB1}, and a feasible solution produced by the greedy heuristic in Section 2.3.2. For Formulations
MA we used the upper bound to eliminate variables (see Section 2.3.1) and seeded the branch and bound
algorithm with an initial feasible solution. For the binary search (Algorithm 1) and PC-SC, we used the
upper and lower bounds as the initial upper and lower bounds for the algorithm.

We tested our solution methods on 12 geographically-motivated datasets from the facility location liter-
ature (see Appendix B).

4.1. Single-objective Problem

First, we study the single-objective version of the RANPCP to gain computational and decision-making
insights.

4.1.1. Comparison of Run Times

In this Section the computational performance of Formulation MA is compared to the p-center set-covering
formulation (PC-SC) from Elloumi et al. (2004) and the binary search algorithm (BS).

Table 1 shows the computational results for using CPLEX branch-and-bound to solve several instances
of the RANPCP. Each row contains the run time from solving an instance of the RANPCP using both
formulations. Each cell in the table contains the time required to solve the problem to optimality. The word
“time” in a cell of the table indicates that the instance was not solved within a time limit of 72 hours; the
word “memory” indicates that the CPLEX branch-and-bound algorithm ran out of memory.
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Table 1: MIP results for various datasets

Run time (s)
No. Dataset p r PC-SC (Elloumi et al., 2004) Form. MA BS
1 d88 5 1 211 17 <1
2 d88 5 2 3506 74 <1
3 d88 10 1 3199 18 <1
4 d88 10 2 57 30 <1
5 d88 27 3 33 5 <1
6 d88 27 6 34 15 <1
7 d88 27 9 55 23 <1
8 d150 5 1 time 531 <1
9 d150 5 2 time 2344 <1
10 d150 10 1 time 569 <1
11 d150 10 2 memory 1762 <1
12 d150 45 5 time 81 <1
13 d150 45 9 time 100 <1
14 d150 45 14 time 145 <1

Table 1 shows that Formulation MA solved the RANPCP faster than PC-SC in all of the instances. This
is likely due to the fact that while the MA and PS-SC formulations have the same number of variables,
the MA formulation has O(|I| × |J |) constraints while the PS-SC formulation has O(|I|2|J |) constraints.
Our results for r = 1 contradict the findings of Elloumi et al. (2004), who found that PC-SC outperformed
Formulation MA when r = 1. However, it is difficult to make a fair comparison because they used CPLEX
v7.1 and we used version 12.1.

The table also shows that binary search (Algorithm 1) required much less computation time than both
MIP formulations.

4.1.2. Scalability of Binary Search Algorithm

In this section we examine how much the computational performance (e.g., run time, number of iterations)
of Algorithm 1 is affected by changing problem parameters such as the number of locations, the number of
facilities, and the number of neighbors.

Table 2 shows that datasets with more nodes usually require more computation time to solve. Each row
of the table shows summary statistics for a set of instances (varying p and r) for a dataset. The table also
shows that the number of nodes does not significantly influence the number of iterations. Algorithm 1 runs
for log2(|I|2 + 1) iterations in the worst case (Elloumi et al., 2004). However, the upper and lower bounds
for the RANPCP and the heuristic for the MSCLP often reduce the number of iterations.

Table 2: Summary statistics for runtime and number of iterations for all instances of each dataset

Total computation time (s) Number of iterations
Dataset min max avg. var. min max avg. var.
sw55 0 0.1 0.02 <0.01 0 10 4.9 19.52
lor100 0 0.26 0.06 <0.01 0 14 6.4 45.49
lon150 0.02 4.4 0.91 1.1 0 15 13 11.44
lor200 0.02 2.9 0.56 0.7 0 16 8.8 43.59
lor300a 0.04 17 1.8 16.2 0 17 6.5 51.15
lor402a 0.1 70 6.3 253 0 18 8.1 53.05
lor818 7.6 5454 861 1690336 11 19 16 5.49
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Because the number of iterations does not change significantly with an increase the the number of nodes,
we conclude that the time per iteration increases as the number of nodes increase. Therefore, the increased
run time is due to the time required to solve a larger set cover problem at each iteration.

We also examined the affect of |I|, p, and r on the runtime and found that the runtime increased with
|I|. However, we did not find that p or r had much affect.

4.1.3. Sensitivity of Number of Neighbors, r

Because a decision-maker may be unsure about the true value of r, the number of covers required, it
is useful for them to understand the sensitivity of the optimal solution values to the choice of r. To help
the decision-maker understand the sensitivity, we measured the relative error in the optimal objective value
caused by an incorrect choice of r. The following notation is used to quantify this relative error. First, let
f(r)(Y ) be the maximum distance from a demand point to its rth closest facility given the set of located
facilities represented by the solution variable Y . Let Y ∗(r) be the optimal solution to the r-all-neighbor
p-center problem. Finally, let ηr′r denote the relative objective function error that occurs when a decision-
maker models the number of covers required as equal to r′ when it is truly equal to r, which is calculated
as

ηr′r =
f(r)(Y

∗
(r′))− f(r)(Y

∗
(r))

f(r)(Y
∗
(r))

. (6)

Table 3 displays the value of ηr′r for several values of r′ and r for the d49 and lon150 datasets. Two main
observations can be made from this table. (1) The results indicate that the RANPCP is sensitive to error
in the value of r. Excluding the experiments where ηr′r = 0 (i.e., r′ = r), the relative objective function
increase, ηr′r, ranges from 0.15 to 3.5 with an average of 1.06. Thus, on average, the objective function is
doubled when the value of the number of neighbors is inaccurate. (2) Surprisingly, the relative objective
function increase, ηr′r, does not always increase with the magnitude of error, |r′−r|. Thus, a decision-maker
is not guaranteed to obtain higher quality solutions by spending more to improve the estimate of r.

Table 3: Relative objective function error, ηr′r, for incorrect value of r

(a) d49 dataset

r (Actual)
1 2 3 4

r′ (Perceived)

1 0 1.89 0.98 1.85
2 1.10 0 2.01 1.85
3 3.50 0.53 0 1.61
4 0.90 1.44 0.15 0

Average
excluding zeros

1.48

(b) lon150 dataset

r (Actual)
1 2 3 4

r′ (Perceived)

1 0 0.59 0.68 0.31
2 0.63 0 0.51 0.34
3 1.11 0.35 0 0.45
4 1.7 0.67 0.27 0

Average
excluding zeros

0.63

4.1.4. Saturation Point

In this section we investigate a property of the RANPCP called saturation, which is an artifact of using
the maximum distance measure along with the worst-case risk measure. An instance of the RANPCP is
saturated if the r closest facilities to a given demand point are located and the distance from that demand
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point and its rth closest located facility is equal to the optimal objective value. When an instance is saturated
for a given value of p and r, locating additional facilities does not improve the objective.

The specific analysis that we present in this section is an analysis of the point at which datasets become
saturated for a value of r. Let p∗(r) be the saturation point for a dataset with r neighbors. In other words,
p∗(r) is the smallest value of p such that the instance of the RANPCP with a given number of facilities p
and number of neighbors r is saturated.

A modeling implication of saturation is that it is possible to allow p facilities to be located in the RANPCP
when in fact only p∗(r) are needed to minimize the max rth closest distance. A MIP formulation is unlikely
to identify the saturation phenomenon unless the number of facilities located is included as an additional
objective function term. However, since a binary search algorithm such as Algorithm 1 minimizes the number
of facilities in each iteration (e.g., by solving MSCLP), saturation can be identified.

Figure 2 shows the saturation point vs. r for several datasets. For an instance with a given value of r,
the saturation point can be found by setting p = |I| and using Algorithm 1. When the algorithm terminates,
record the number of facilities located in the optimal solution. This is the saturation point. In the Figure,
the saturation point is always greater than r. This implies that p∗(r) ≥ r, which must be true because a
saturated solution has at least r located facilities. The figure also illustrates that the saturation point is not
monotonic with respect to r.
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Figure 2: Saturation point vs. r for several datasets

Figure 2 also shows that the saturation curves eventually approach a point where the saturation point
equals r. Let the super-saturation point, r0, be a value of r such that p∗(r) = r and p∗(r0 + n) = r0 + n for
n = 1, . . . , |I| − r0. We observed the following about the super-saturation point:

1. Once the super-saturation point is reached, the solutions often become nested. In other words, the
solution for p∗(r0 + n) is a subset of the solution for p∗(r0 + n+ 1) for n = 0, . . . , |I| − r0 − 1.

2. Objective values are not always the same for p∗(r0 + n) for n = 1, . . . , |I| − r0. Consequently, the
bottleneck pair (the facility i and demand point j for which dij equals the optimal objective) are also
different for different values of r.

Table 4 contains the super-saturation point for several instances. The table shows that the ratio r∗

|I| varies
across datasets. Also, all of the unweighted datasets had a super saturation point equal to |I|. Thus, the
saturation point is clearly influenced by the demand point weights.
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Table 4: Super-saturation point for various datasets

Wtd. Unwtd. Wtd.-Unwtd.
Dataset r0

r0
|I| r0

r0
|I| r0

r0
|I|

sw55 22 0.45 49 1 -27 -0.55
lor100 38 0.38 100 1 -62 -0.62
lon150 140 0.93 150 1 -10 -0.07
lor200 67 0.34 200 1 -133 -0.66
lor300a 69 0.23 300 1 -231 -0.77
lor300b 69 0.23 300 1 -231 -0.77
Min 38 0.23 55 1 -231 -0.77
Max 140 0.93 300 1 -9 -0.07

Average 72 0.49 184 1 -113 -0.57

The appendix contains theoretical results related to saturation.

4.2. Bi-objective Problem

Next, we examine two bi-objective versions of the RANPCP: 1) jointly minimize both the non- and
post-disruption radii and 2) jointly minimize both the number of facilities located and the post-disruption
radius.

4.2.1. Scalability of Bi-objective algorithms

In Section 3, algorithms for generating the set of Pareto-efficient points for two objectives were described.
For these algorithms to be useful in practice, they need to be able to facilitate scenario analysis; that is, the
run time of the algorithm should be short enough to allow the decision maker to experiment with different
scenarios and receive feedback within a reasonable amount of time (e.g., about 24 hours). Fortunately,
Algorithms 2–3 meet the said requirements for trial-and-error analysis.

Table 5 displays the run times for computing the set of Pareto-efficient points for the non-disruption
radius and post-disruption radius objectives (Algorithm 2) for several problem instances. As the results
show, Algorithm 2 generates the set of Pareto-efficient points quickly for the smaller datasets. The run times
for the lor818 dataset are much higher than for the other datasets, which is not surprising because the lor818
instances required much longer run times for single-objective RANPCP (see Table 2).

Table 5: Run time for max distance vs. max rth distance algorithm (Algorithm 2)

Dataset Budget, p r Run time (s)
d49 10 1 0.3
d49 10 2 1.0
d49 15 3 0.6
d49 15 5 0.7
d150 15 2 112
d150 15 3 17
d150 30 3 22
d150 30 6 32
lor818 164 33 9066
lor818 164 50 11857
lor818 245 25 12548
lor818 245 50 9660
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Table 6 displays the run times for computing the set of Pareto-efficient points for the cost and post-
disruption radius objectives (Algorithm 3) for several problem instances. As in Table 5, the results show
that Algorithm 2 generates the set of Pareto-efficient points quickly, although the run times for the lor818
dataset are much higher than for the other datasets.

Table 6: Run time for design cost vs. max rth distance algorithm (Algorithm 3)

Dataset r computation time (s)
d49 2 1
d49 3 1
d150 5 83
d150 9 48

lor402a 5 7
lor402a 9 9
lor818 33 16672
lor818 50 13283

4.2.2. Max Closest Distance Vs. Max rth Closest Distance

Figure 3 shows the complete Pareto-efficient set for the max closest distance and max rth closest distance
for several instances of the d49 and d150 datasets. Each of the sets were generated using Algorithm 2.
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(a) Daskin 49-node dataset (d49), p = 4
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(b) Daskin 49-node dataset (d49), p = 9
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(c) Daskin 150-node dataset (d150), p = 15
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(d) Daskin 150-node dataset (d150), p = 30

Figure 3: Max closest distance vs. max rth closest distance for several datasets

Figure 3 produces two main insights. First, for many of the Pareto-efficient sets, there is significant
horizontal and vertical separation between the points. This separation indicates that the algorithm for
obtaining the Pareto-efficient presents more valuable information to a decision-maker than an algorithm
that only optimizes a single objective in isolation. This value comes from the fact that a single-objective
solution may not be Pareto-efficient. For example, if an objective is minimized in isolation, a solution could
be obtained that lies on the dashed line to the right of one of the points, i.e., a non-Pareto-efficient solution.
This solution is undesirable because the max rth closest distance objective can still be decreased significantly
without any increase in the max closest distance! Second, the curves show that if a decision-maker wishes
to minimize one of the objectives by itself, the other objective will be far from its minimum value. This fact
can be observed by examining the two endpoints of each of the Pareto-efficient sets. For example, for the d49
dataset with p = 4 and r = 2, the max closest distance value of the leftmost point of the Pareto set is about
three times higher than the minimum max closest distance value. Because of this fact, a decision-maker may
wish to choose one of the Pareto-efficient solutions that is a compromise between the two objectives.

Figure 3 demonstrates graphically that if one of the objectives is minimized in isolation, the other
objective value can be much higher than optimal. In the remainder of this section, this objective function
increase is demonstrated numerically. Formally, if the RANPCP model is used to optimize the max rth
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closest distance, the resulting solution may have a max closest distance that is much higher than the max
distance of a solution optimized for max distance. This is a problem because the max distance without
disruptions is usually a primary objective and potential consequence a secondary objective. We measure this
relative objective function increase for two cases: 1) the RANPCP model is used to minimize the max rth

closest distance and 2) the p-center model is used to minimize the max closest distance.
We use the following notation for our relative objective function increase analysis. Define the max closest

distance objective as the objective of minimizing the distance to from a demand point to its closest located
facility. Let the RANPCP objective with r neighbors required be called the max rth closest distance objective.
For a given instance, let Y ∗(1) be the optimal facility configuration for the max closest distance objective and
let Y ∗(r) be the optimal facility configuration for the max rth closest distance objective. The functions f(1)(Y )

and f(r)(Y ) are the max closest distance and max rth closest objective values for a location configuration Y .

Let the relative objective function increase for not considering WS-WD be ηr,1 =
f(1)(Y

∗
(r))−f(1)(Y

∗
(1))

f(1)(Y
∗
(1)

) and the

relative objective function increase for not considering PD-WS be η1,r =
f(r)(Y

∗
(1))−f(r)(Y

∗
(r))

f(r)(Y
∗
(r)

) .
Table 7 shows summary statistics for ηr,1 and η1,r over all of our datasets and instances. The average

relative objective function increase for not considering WS-WD is 0.43 while the average relative objective
function increase for not considering PD-WS is 6.3. Hence, if only one objective is used, it should be the post-
disruption radius. However, since the objectives are conflicting, a bi-objective model is more appropriate.

Table 7: Summary statistics for ηr,1 and η1,r for all instances of each dataset

ηr,1 η1,r η1,r/ηr,1

min max avg. var. min max avg. var. min max avg. var.

sw55 0.18 0.96 0.51 0.08 0.32 1.70 1.10 0.25 0.21 1.00 0.53 0.05

lor100 0.00 0.92 0.48 0.08 1.40 9.70 5.90 11.00 0.00 0.37 0.15 0.02

lon150 0.00 0.69 0.39 0.06 0.59 5.80 2.00 2.17 0.00 0.94 0.33 0.09

lor200 0.00 0.84 0.47 0.07 0.90 21.00 10.00 49.13 0.00 0.58 0.12 0.03

lor300a 0.00 1.50 0.64 0.22 0.81 26.00 13.00 75.18 0.00 1.00 0.16 0.08

lor300b 0.00 1.50 0.64 0.22 0.81 26.00 13.00 75.18 0.00 1.00 0.16 0.08

lor400a 0.00 1.30 0.52 0.19 0.85 37.00 16.00 142.91 0.00 1.30 0.15 0.12

lor400b 0.00 1.30 0.52 0.19 0.85 37.00 16.00 142.91 0.00 1.30 0.15 0.12

lor818 0.28 1.30 0.61 0.15 0.46 11.00 3.90 10.55 0.03 1.30 0.37 0.15

ALL 0.00 1.50 0.43 0.01 0.08 37.00 6.30 2625 0.00 3.90 0.29 0.18

4.2.3. Number of Facilities Located Vs. Maximum rth Closest Distance

Next, we examine the tradeoff between the number of facilities located and the max rth closest distance.
Figure 4 shows the complete Pareto-efficient set for the number of facilities located (p) vs. max rth closest

distance for several instances of datasets d49 and d150. Each set was generated using Algorithm 3.2 but not
using the bounds described in Sections 2.3.1 and 2.3.2 during the execution of the Algorithm 1.

Figure 4 yields several insights. First, the Pareto-sets have a similar form for different values of r,
indicating that the change in the max rth closest distance is relatively insensitive to the choice of r. This
insight helps a decision-maker make the decision of whether or not add an additional facility without worrying
that the value of r is inaccurate. Second, many portions of the Pareto-efficient set are “flat,” meaning that a
slight increase in the number of facilities significantly decreases the max rth closest distance. This insight is
helpful to decision-makers because it shows that it is desirable to find solutions that are on the left side of
the “flat” region, meaning that they achieve a relatively large reduction in the max rth closest distance by
locating a relatively small number of facilities. Third, the Pareto sets show that once the max rth closest
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(a) Daskin 49-node dataset (d49)
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(b) Daskin 150-node dataset (d150)

Figure 4: Number of facilities vs. max rth closest distance

distance reaches a particular value, increases in the number of facilities no longer produce a reduction in the
max rth closest distance. This phenomenon is called saturation and is explained in Section 4.1.4.

5. Example

In this section we discuss the implications of the empirical results described in the previous section.
We explain these insights through a detailed analysis of the classic 55-node dataset from Swain (1971)
(abbreviated sw55). The nodes in this dataset represent districts in the city of Washington, D.C. The nodes
each have a weight that is proportion to the population at that node.

In this case study a decision maker wishes to locate ambulances within the districts of the city. The
decision maker is especially interested in the response time for emergencies requiring more than one ambu-
lance. Each demand point represents a district and has a weight corresponding to population. The decision
is where to locate 13 ambulances within the 55 city districts.

First, consider the solution to the RANPCP with p = 13 and r = 6, shown in Figure 5a. In this
solution the vehicle locations are spread so that every demand point has six vehicles within a reasonably
close distance. The maximum response time of the 6th vehicle to an incident at a demand point is 317 time
units. The maximum closest distance for this location configuration is 154.
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(a) Solution to RANPCP with r = 3 and p = 13 (b) 13-center solution

Figure 5: Ambulance locations for case study

Next, consider the problem of locating p facilities to minimize the maximum time required for the first
vehicle to arrive at a scene. This problem can be solved using the classic p-center model. The solution for
p = 13 is shown in Figure 5b. In this solution, contrasted with the RANPCP solution in Figure 5a, most
of the vehicles are located in the center. This solution is centralized because 1) the demand points in the
center have the largest weights in the Swain dataset and 2) because r = 1, every demand point only needs
to have one facility within a reasonably close distance. For this solution, the maximum response time for
one vehicle is 72 and the maximum response time for the 6th vehicle is 741.

Given the application of ambulance response, the relative objective function increases have different
interpretations: the relative objective function increase for underestimating the number of vehicles needed,
η1,r, and the relative objective function increase for overestimating the number of vehicles needed, ηr,1.

In this example η1,6 = 741−317
317 = 1.33. This means that if the 13-center solution is chosen, the response

time of the 6th vehicle is 133% higher than if the RANPCP solution had been used. Further, η6,1 =
154−72

72 = 1.13. This means that if the RANPCP solution is chosen, the response time of the first vehicle is
113% higher than if the p-center solution had been used. Thus, a decision-maker that is concerned about
incidents requiring the response of many (∼ 6) vehicles would likely prefer the solution shown in Figure 5a
over the solution shown in 5b.

6. Conclusions and Future Work

This paper described a study of the r-all-neighbor p-center problem (RANPCP) and makes the following
contributions to the literature:

1. We described algorithms for computing the Pareto-efficient set for combinations of two objectives:
closest distance vs rth-closest distance and cost vs. rth-closest distance.

2. We performed a series of computational tests of the single- and bi-objective RANPCP that suggest
several decision-making insights.

19



3. We found that the solution times for a simple modification of the standard p-center MIP formulation
are better that those of an existing MIP formulation.

Our experiments revealed several insights into the single- and bi-objective versions of the RANPCP. For the
single-objective version, experiments showed that the RANPCP model is sensitive to changes in the number
of neighbors, r. However, in our experiments the relative objective function error did not depend on the
the magnitude of the change in the number of neighbors. We also discovered a structural property of the
RANPCP called saturation, the point at which locating additional facilities does not improve the objective
function. As we discussed, this property shows a drawback of considering only the post-disruption radius
objective in isolation.

For the bi-objective version, we generated Pareto-efficient solutions for the WS-WD and PD-WS objec-
tives. The sets of solutions demonstrated that if a a single objective is minimized in isolation, the value of
the other objective will be much higher than optimal. As an alternative to single-objective minimization, the
set of Pareto-efficient includes solutions that are a good compromise between the two objectives. We also
measured the relative objective function increase associated with optimizing a single objective in isolation.
We found that the solutions that are optimal for potential consequence have a WS-WD that is, on average,
43% more than the optimal. However, solutions that are optimal for WS-WD have a potential consequence
value that is, on average, 630% more than the optimal. Thus, if only one objective is modeled, it should be
the potential consequence objective. We also used our model to analyze the tradeoff between the number of
facilities built and the potential consequence. We found that for several instances, significant reductions in
potential consequence can be obtained by building a few additional facilities.

6.1. Future Work

Although this work focused on the maximum distance measure, there are several other distance measures
that are important to consider in a facility location model with disruptions such as the total (weighted)
distance measure. Considering both maximum distance and total distance simultaneously would be valuable
because when the maximum distance measure is used, there are usually multiple optimal solutions due to
the bottleneck structure. In addition, it would be interesting to analyze the worst-case total distance of
solutions produced by the RANPCP.

The models in this paper assumed that the number of neighbors, r, is known with certainty. It may
be useful for decision makers to have a model that allows them to place a probability distribution on r in
order to minimize the expected loss. This could be used to model the situation where a decision maker is
unsure about the amount of resources that an interdictor has. It could also be used when a decision maker
is interested in emergency response to different types of incidents, each of which require a different number
of vehicles. Alternatively, a robust optimization approach could be used to account for the uncertainty
in the value of r. This approach would generate a facility location solution that minimizes the maximum
post-disruption radius over all realizations of r.
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Appendix A. Other Formulations

In this section we describe several other models for the RANPCP, besides the MA formulation presented
in Section 2.1.

Appendix A.1. Three Index Formulation

First, we present a straightforward formulation of the RANPCP. In this formulation we keep track of the
corresponding level for each demand-facility pair. The “level” at which a facility is assigned to a demand
point is simply the distance rank of that facility in relation to the other located facilities.

Variables.

• Yi is 1 if a facility is located at i and 0 otherwise.

• Xij` is 1 if the facility located at i is assigned to demand point j and i is the `th closest located facility
to j.

(M1) min U (A.1a)

s.t.
∑
i∈I

dijXijr ≤ U ∀j ∈ J (A.1b)∑
i∈I

Xij` = 1 ∀j ∈ J , ` = 1, . . . , r (A.1c)

r∑
`=1

Xij` ≤ 1 ∀i ∈ I, j ∈ J (A.1d)

dij Xij` ≤ di′ j +Mj(1−Xi′,j,`+1) ∀j ∈ J ; ` = 1, . . . , r − 1; (A.1e)

i 6= i′ ∈ I

Xij` ≤ Yi ∀i ∈ I, j ∈ J , ` = 1, . . . , r (A.1f)∑
i∈I

Yi ≤ p (A.1g)

Xij` ∈ {0, 1} ∀i ∈ I, j ∈ J , ` = 1, . . . , r (A.1h)

Yi ∈ {0, 1} ∀i ∈ I (A.1i)

Constraints (A.1b), in conjunction with the minimization objective in (A.1a), ensure that the objective
value is equal to the maximum value of the weighted distance between demand points and their rth closest
located facility, over all demand points. Constraints (A.1c) require that a demand point be assigned to one
facility at each level. Constraints (A.1d) prevent a facility from being assigned to more than one level for
a demand point. Constraints (A.1e) enforce an ordering of the levels for each demand point. That is, the
facility assigned to demand point j at level ` must have a smaller value of dij than the facility assigned at
level (` + 1). The constant Mj is assigned a large value such as maxi 6=i′∈I |dij − di′j |. Constraints (A.1f)
specify that a demand point may only be assigned to a facility i at a level if the facility has been located
at i. Constraints (A.1g) place a restriction on the number of facilities that are located. Constraints (A.1h)
define binary assignment variables for only the r most desirable levels for each facility and demand point
combination. Finally, constraints (A.1i) require the location variables to be binary.
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Appendix A.2. Reformulation of the RANPCP

Unfortunately, ModelM1 has a large number of assignment variables, |I|×|J |×p to be exact. In addition,
it has a disjunctive constraint (A.1e) for each pair of consecutive pair of levels (`, ` + 1). However, some
of the variables in model M1 are unnecessary. In finding the optimal solution to the RANPCP it doesn’t
matter if demand points are assigned to the correct level for levels ` < r + 1, because these assignments
are not included in the objective function. The only requirement for the objective function to be computed
correctly is that each demand point is assigned to its correct (r + 1)th level. Thus, it is enough to require
that if Xijr = 1 and Xi′j` = 1 (with ` < r) then i must be further to j than i′. Thus, many of the disjunctive
constraints (A.1e) are unnecessary. We take advantage of this fact in formulating a more compact model.

Variables.

• Xij is equal to 1 if the facility located at i is assigned to demand point j as its (r − 1)th or closer
located facility and 0 otherwise.

• Zij is equal to 1 if the facility located at i is assigned to demand point j as its rth closest located
facility and 0 otherwise. Since this variable represents the assignment from a demand point to one of
its backup facilities, we call it the ‘backup variable’.

Indices.

• i`j is the `th closest facility to demand point j.

(M2) min U (A.2a)

s.t.
∑
i∈I

Zij ≤ U ∀j ∈ J (A.2b)∑
i∈I

Zij = 1 ∀j ∈ J (A.2c)∑
i∈I

Xij = r − 1 ∀j ∈ J (A.2d)

dijXij ≤ di′j +Mj(1− Zi′j) ∀j ∈ J , i′ ∈ I, i 6= i′ ∈ I (A.2e)

Xij + Zij ≤ Yi ∀i ∈ I, j ∈ J (A.2f)∑
i∈I

Yi ≤ p (A.2g)

Xij , Zij ∈ {0, 1} ∀i ∈ I, j ∈ J (A.2h)

Yi ∈ {0, 1} ∀i ∈ I (A.2i)

The objective (A.2a) and constraints (A.2b) serve the same purpose as in model M1. Constraints (A.2c)
require that a demand point be assigned to exactly one facility at level r. Constraints (A.2d) ensure that
r − 1 facilities are assigned to levels r − 1 or lower. Constraints (A.2e) enforce an ordering of the levels for
each demand point. That is, the facilities assigned to demand point j at levels 1 through (r − 1) must have
a smaller value of dij than the facility assigned at level r. The constant Mj is the same as in M1. When
two facilities have the same distance to a demand point, the following constraints should be used:

dijXij < di′j + ε+Mj(1− Zi′j) ∀j ∈ J , i′ ∈ I, i 6= i′ ∈ I (A.3)

24



The quantity ε should take a value less than the minimum absolute difference between two values of
dij . Constraints (A.2f) specify that a demand point may only be assigned to a facility i at a level if the
facility has been located at i. Constraints (A.2g) place a restriction on the number of facilities located. Con-
straints (A.2h) define binary assignment variables for each facility and demand point combination. Finally,
constraints (A.2i) require the location variables to be binary.

One may notice that in M2, some of the Zij variables will be 0 in an optimal solution. In particular, for
a given j, Zij will be zero for all facilities closer than the rth facility. To explain this formally we first need
to introduce further notation. Let i`j be the `th closest facility to demand point j.

Now we state our observation in the form of a remark:

Remark 1. There exists an optimal solution to model M2 with Ziljj = 0 for all 1 ≤ ` ≤ r − 1 and for all
j ∈ J .

Proof. (By contradiction.) Suppose there exists an ` (1 ≤ ` ≤ r − 1) such that in the optimal solution
to model M2, Zi`jj = 1 for some j ∈ J . As a result,

∑
1≤`′≤r−1 Zi`′j j

< r − 1 and by constraints (A.2e),∑
r−1<`′≤|I| Zi`′j j

= 1. Hence, there exists an `′ (r − 1 < `′ ≤ |I|) such that Zi`′j j = 1.
Case 1: All of the values of dij are different.
By our choice of ` and `′, di`jj < dil′j j

. As a result, Constraint (A.2e) is violated for j if Zi`jj = 1 and
Zi`′j j

= 1.
Case 2: There exists i, i′ ∈ I such that for some j ∈ J , di′j = dij .
By our choice of ` and `′, di`jj ≤ di`′j j

. As a result, Constraint is (A.3) violated for j if Zi`jj = 1 and
Zi`′j j

= 1.

Because of Remark 1, all variables Zi`jj for all 1 ≤ ` ≤ r − 1 and all j ∈ J can be removed from Model
M2. We denote the new model that is formed by removing variables from model M2 as model M2− C.

The linear programming (LP) relaxation ofM2−C can be tightened by adding the following constraints:

rZi`jj ≤
`−1∑
`′=1

Yi`j ∀j ∈ J ; r ≤ ` ≤ |I|. (A.4)

These constraints require that for a given demand point j, if its `th closest facility, i`j , is chosen as its safe
facility (i.e., Zi`jj = 1), then r facilities must be located that are closer to j than i`j (i.e.,

∑`−1
`′=1 Yi`j = r ).

Appendix A.3. Formulation without Constraints to Enforce Distance-Ordering

A limiting feature of Models M2 and M2 − C are the distance-ordering Constraints (A.2e), which are
numerous. These constraints can be replaced with the following requirement: if a backup assignment is made
from demand point j to a facility at i, then at least r facilities must be located that are at least as close to
j as i. This replacement also allows the elimination of the variables Xij . Because this new formulation only
uses the backup variables, Wij , we denote it as BACKUP. Formulation BACKUP is as follows:
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(BACKUP) min U (A.5a)

s.t. dijWij ≤ U ∀i ∈ I, j ∈ J (A.5b)

rWij ≤
∑

i′:di′j≤dij

Yi′ ∀j ∈ J , i ∈ I (A.5c)

∑
i∈I

Wij = 1 ∀j ∈ J (A.5d)

Wij ≤ Yi ∀i ∈ I, j ∈ J (A.5e)∑
i∈I

Yi ≤ p (A.5f)

Yi ∈ {0, 1} ∀i ∈ I (A.5g)

Wij ∈ {0, 1} ∀i ∈ I, j ∈ J (A.5h)

The objective (A.5a) and Constraints (A.5b) are equivalent to the other models. Constraints (A.5c) are
the key to this model. They require that a backup assignment can only be made between demand point
j and a facility placed at location i if at least r facilities are located at locations no further to j than i.
Constraints (A.5d) require every demand point to be assigned a backup facility. Although the model is still
correct without Constraints (A.5e) (because of the presence of Constraints (A.5c)), they are added to tighten
the linear-programming relaxation. Constraints (A.5f) limit the number of facilities located and Constraints
(A.5g) and (A.5h) require the variables to be binary.

A weakness of Formulation (BACKUP) is the use of Constraints (A.5c), in which the coefficient r acts
as a “Big-M”, weakening the linear-programming relaxation.

Appendix B. Datasets Used in Experimentation

The following Table contains the 18 datasets used in the experimentation. The third column of Table B.8
indicates which datasets have weighted demand points and which do not. If demand points have weights,
the distance values dij usually do not obey the triangle inequality.
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Table B.8: Datasets used in experimentation

no. name |I| = |J | weights source of data reference
1 s55 55 yes population centers in

Washington, D.C.
Swain (1971)

2 d49 49 yes 49 US state capitals and
Washington, D.C.

Daskin (1995)

3 d88 88 yes cities in US Daskin (1995)
4 d150 150 yes cities in US Daskin (1995)
5 lor100 100 yes population centers in

San Jose Dos Campos,
Brazil

Lorena and Senne (2004)

6 lon150 150 yes population centers in
London, Ontario

Alp et al. (2003)

7 lor200 yes yes population centers in
San Jose Dos Campos,

Brazil

Lorena and Senne (2004)

8 lor300a 300 yes population centers in
San Jose Dos Campos,

Brazil

Lorena and Senne (2004)

9 lor300b 300 yes population centers in
San Jose Dos Campos,

Brazil

Lorena and Senne (2004)

10 lor400a 402 yes population centers in
San Jose Dos Campos,

Brazil

Lorena and Senne (2004)

11 lor400b 402 yes population centers in
San Jose Dos Campos,

Brazil

Lorena and Senne (2004)

12 lor818 818 no population centers in
San Jose Dos Campos,

Brazil

Lorena and Senne (2004)

Appendix C. Effect of Weights on Binary Search Algorithm

In this section we try to determine if weighted or unweighted instances require more computation time
for the binary search algorithm. We used our two largest weighted datasets, lor400a and lor400b, for our
analysis. Table C.9 shows the computation times and number of binary search iterations for the weighted
and unweighted versions of several instances of the RANPCP. When the optimal solution is found after the
lower and upper bounds stage because lb = ub, the number of iterations is listed as 0. Each row shows the
computation time and number of iterations required for the weighted and unweighted versions of an instance.
From the results in this table, it is difficult to discern if the weighted or unweighted problem requires more
computation. In half of the instances, the unweighted version requires more computation time. This is also
true for the number of iterations.
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Table C.9: Binary search computational results for wtd. and unwtd. datasets

Time (s) Number of iterations
No. Dataset p r p

|I|
r
p

wtd unwtd wtd-
unwtd

wtd unwtd wtd-
unwtd

1 lor402a 5 1 0.012 0.2 3.5 3.2 0.33 18 16 2
2 lor402a 5 2 0.012 0.4 4 3.9 0.08 14 16 -2
3 lor402a 10 1 0.025 0.1 2.9 3.8 -0.86 17 15 2
4 lor402a 10 2 0.025 0.2 3.5 3.4 0.15 13 15 -2
5 lor402a 40 1 0.100 0.025 5.4 14.0 -8.5 16 13 3
6 lor402a 40 2 0.100 0.05 0.1 15.0 -15 0 14 -14
7 lor402b 5 1 0.012 0.2 3.6 3.1 0.54 18 16 2
8 lor402b 5 2 0.012 0.4 4 3.9 0.1 14 16 -2
9 lor402b 10 1 0.025 0.1 3 3.8 -0.8 17 15 2
10 lor402b 10 2 0.025 0.2 3.6 3.4 0.15 13 15 -2
11 lor402b 40 1 0.100 0.025 5.4 14.0 -8.5 16 13 3
12 lor402b 40 2 0.100 0.05 0.1 15.0 -15 0 14 -14

Min 0.1 3.1 -15 0 13 -14
Max 5.4 15 0.54 18 16 3

Average 3.3 7.2 -3.9 13 15 -1.8

Appendix D. Saturation

In this section we prove the existence of a structural property of the RANPCP called saturation. An
instance of the RANPCP is saturated if the r closest facilities are located for a given demand point and the
distance from that demand point and its rth closest located facility is equal to the optimal objective value.
When an instance is saturated for a given value of p and r, locating additional facilities does not improve
the objective.

Let V (p, r) be the optimal objective value for an instance of the RANPCP with p facilities and r neighbors.
An instance of the RANPCP is said to be saturated for a given p and r if an optimal solution exists that
has an objective value of maxj{dirj j} = V (p, r). We call the quantity maxj{dirj j} the saturation objective.

Lemma 1. For an instance with r neighbors, the saturation objective is obtained when the r closest facilities
to demand point j are located, where j = arg maxj{dirj j}.

Proof. By the definition of saturated, maxj{dirj j} = V (p, r). Let j = argmaxj{dirj j}. By the definition of
the RANPCP, the distance from j and each of its r closest located facilities must be less than V (p, r) =
maxj{dirj j}. However, the distance from j and each of its r closest located facilities can only be less than
V (p, r) = maxj{dirj j} if the r closest facilities to j are located.

Theorem 1. If an instance is saturated for a given p (p ≤ |J | − 1) and r, then V (p, r) = V (p + 1, r) and
the instance is also saturated for p+ 1 and r.

Proof. By the definition of saturation, there exists a j ∈ J such that dirj j = V (p, r). By Lemma 1, the r
closest facilities to j have been located. Let p = p + 1. Thus, one new facility can be located. Wherever
the new facility is located, it will be at least as far from demand point j as facility irj . As a result, this
additional facility location would not change the distance from j to its rth closest located facility and the
optimal objective value is not changed. Thus, V (p, r) = dirj j = V (p + 1, r) and therefore the instance is
saturated for p+ 1 and r.

28


