Magnetism in metastable and annealed compositionally complex alloys

Article Status: Published
Publication Year: 2022
Nan Tang, Lizabeth Quigley, Walker L. Boldman, Cameron S. Jorgensen, Rémi Koch, Daniel O'Leary, Hugh R. Medal, Philip D. Rack, and Dustin A. Gilbert.
[External Link]

Compositionally complex materials (CCMs) present a potential paradigm shift in the design of magnetic materials. These alloys exhibit long-range structural order coupled with limited or no chemical order. As a result, extreme local environments exist with a large variations in the magnetic energy terms, which can manifest large changes in the magnetic behavior. In the current work, the magnetic properties of (Cr, Mn, Fe, Ni) alloys are presented. These materials were prepared by room-temperature combinatorial sputtering, resulting in a range of compositions with a single bcc structural phase and no chemical ordering. The combinatorial growth technique allows CCMs to be prepared outside of their thermodynamically stable phase, enabling the exploration of otherwise inaccessible order. The mixed ferromagnetic and antiferromagnetic interactions in these alloys causes frustrated magnetic behavior, which results in an extremely low coercivity (<1mT), which increases rapidly at 50 K. At low temperatures, the coercivity achieves values of nearly 500 mT, which is comparable to some high-anisotropy magnetic materials. Commensurate with the divergent coercivity is an atypical drop in the temperature dependent magnetization. These effects are explained by a mixed magnetic phase model, consisting of ferro-, antiferro-, and frustrated magnetic regions, and are rationalized by simulations. A machine-learning algorithm is employed to visualize the parameter space and inform the development of subsequent compositions. Annealing the samples at 600 °C orders the sample, more-than doubling the Curie temperature and increasing the saturation magnetization by as much as 5×. Simultaneously, the large coercivities are suppressed, resulting in magnetic behavior that is largely temperature independent over a range of 350 K. The ability to transform from a hard magnet to a soft magnet over a narrow temperature range makes these materials promising for heat-assisted recording technologies.